The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275429 Number of set partitions of [n] such that n is a multiple of each block size. 4
 1, 1, 2, 2, 11, 2, 167, 2, 1500, 1206, 16175, 2, 3486584, 2, 3188421, 29226654, 772458367, 2, 130880325103, 2, 4173951684174, 623240762412, 644066092301, 2, 220076136813712815, 31580724696908, 538897996103277, 49207275464475052, 44147498142028751570, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..587 Wikipedia, Partition of a set FORMULA a(n) = n! * [x^n] exp(Sum_{d|n} x^d/d!) for n>0, a(0) = 1. a(n) = A275422(n,n). a(p) = 2 for p prime. EXAMPLE a(4) = 11: 1234, 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. a(5) = 2: 12345, 1|2|3|4|5. MAPLE A:= proc(n, k) option remember; `if`(n=0, 1, add(       `if`(j>n, 0, A(n-j, k)*binomial(n-1, j-1)), j=       `if`(k=0, 1..n, numtheory[divisors](k))))     end: a:= n-> A(n\$2): seq(a(n), n=0..30); MATHEMATICA A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[If[j > n, 0, A[n - j, k]* Binomial[n - 1, j - 1]], {j, If[k == 0, Range[n], Divisors[k]]}]]; a[n_] := A[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *) CROSSREFS Main diagonal of A275422. Sequence in context: A037234 A141651 A213990 * A222878 A090525 A328455 Adjacent sequences:  A275426 A275427 A275428 * A275430 A275431 A275432 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 27 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 01:35 EDT 2022. Contains 354092 sequences. (Running on oeis4.)