login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of multisets of k odd numbers with a cap of the total sum set to n.
3

%I #30 Dec 22 2018 03:32:34

%S 1,1,1,2,1,1,2,3,1,1,3,4,3,1,1,3,8,5,3,1,1,4,10,10,5,3,1,1,4,16,15,11,

%T 5,3,1,1,5,20,27,17,11,5,3,1,1,5,29,38,32,18,11,5,3,1,1,6,35,60,49,34,

%U 18,11,5,3,1,1,6,47,84,83,54,35,18,11,5,3,1,1,7,56,122,123

%N Triangle read by rows: T(n,k) is the number of multisets of k odd numbers with a cap of the total sum set to n.

%C By considering the partitions of n into k parts we set a cap on the odd numbers of each part and count the multisets (ordered k-tuples) of odd numbers where each number is not larger than the cap of its part.

%C Multiset transformation of A110654 or A065033.

%H Alois P. Heinz, <a href="/A275416/b275416.txt">Rows n = 1..200, flattened</a>

%H <a href="/index/Mu#multiplicative_completely">Index entries for triangles generated by the Multiset Transformation</a>

%F T(n,1) = A110654(n).

%F T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1 < k <= n.

%F G.f.: Product_{j>=1} (1-y*x^j)^(-ceiling(j/2)). - _Alois P. Heinz_, Apr 13 2017

%e T(6,2) = 3+2+3 = 8 counts {1,1} {1,3}, and {3,3} from taking two odd numbers <= 3; it counts {1,1} and {1,3} from taking an odd number <= 2 and an odd number <= 4; and it counts {1,1}, {1,3} and {1,5} from taking an odd number <= 1 and an odd number <= 5.

%e T(6,3) = 1+2+2 = 5 counts {1,1,1} from taking three odd numbers <= 2; it counts {1,1,1} and {1,1,3} from taking an odd number <= 1 and an odd number <= 2 and an odd number <= 3; and it counts {1,1,1} and {1,1,3} from taking two odd numbers <= 1 and an odd number <= 4.

%e 1

%e 1 1

%e 2 1 1

%e 2 3 1 1

%e 3 4 3 1 1

%e 3 8 5 3 1 1

%e 4 10 10 5 3 1 1

%e 4 16 15 11 5 3 1 1

%e 5 20 27 17 11 5 3 1 1

%e 5 29 38 32 18 11 5 3 1 1

%e 6 35 60 49 34 18 11 5 3 1 1

%e 6 47 84 83 54 35 18 11 5 3 1 1

%e 7 56 122 123 94 56 35 18 11 5 3 1 1

%e 7 72 164 192 146 99 57 35 18 11 5 3 1 1

%p b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,

%p `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*

%p binomial(ceil(i/2)+j-1, j), j=0..min(n/i, p)))))

%p end:

%p T:= (n, k)-> b(n$2, k):

%p seq(seq(T(n, k), k=1..n), n=1..16); # _Alois P. Heinz_, Apr 13 2017

%t b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[Ceiling[i/2] + j - 1, j], {j, 0, Min[n/i, p]}]]]];

%t T[n_, k_] := b[n, n, k];

%t Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, May 19 2018, after _Alois P. Heinz_ *)

%Y Cf. A110654 (column 1), A003293 (row sums?), A089353 (equivalent Multiset transformation of A000027), A005232 (2nd column?), A097513 (3rd column?).

%Y T(2n,n) gives A269628.

%K nonn,tabl

%O 1,4

%A _R. J. Mathar_, Jul 27 2016