

A275409


Number of ordered ways to write n as 2*w^2 + x^2 + y^2 + z^2 with w + x + 2*y + 4*z a square, where w,x,y,z are nonnegative integers.


1



1, 2, 1, 0, 2, 2, 2, 1, 1, 1, 0, 3, 1, 2, 1, 1, 3, 2, 5, 3, 4, 3, 1, 1, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 7, 3, 1, 6, 2, 1, 2, 3, 4, 5, 1, 1, 3, 5, 3, 3, 4, 3, 7, 3, 2, 4, 3, 4, 4, 3, 1, 4, 5, 3, 6, 4, 4, 4, 5, 7, 7, 3, 6, 5, 5, 4, 3, 11, 2, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Conjecture: (i) a(n) > 0 except for n = 3, 10, and a(n) = 1 only for n = 0, 2, 7, 8, 9, 12, 14, 15, 22, 23, 24, 25, 36, 39, 44, 45, 60, 87, 98, 106, 110, 111, 183.
(ii) Any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers such that x + 2*y + 3*z  3*w is a square.
(iii) For each triple (a,b,c) = (1,2,1), (1,2,3), (1,3,1), (2,4,1), (2,4,2), (2,4,3), (2,4,4), (2,4,8), (8,9,5), any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers such that a*x + b*y  c*z is a square.
(iv) Any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers such that x + 2*y  2*z is twice a nonnegative cube. Also, each natural number can be written as x^2 + y^2 + z^2 + 2*w^3 with x,y,z,w nonnegative integers such that x + 3*y  z is a square.
See also A275344 and A275301 for related conjectures. We are able to show that each natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w integers such that x + y + z = t^2 for some t = 0, 1, 2.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 0..10000
ZhiWei Sun, Refining Lagrange's foursquare theorem, arXiv:1604.06723 [math.GM], 2016.


EXAMPLE

a(2) = 1 since 2 = 2*1^2 + 0^2 + 0^2 + 0^2 with 1 + 0 + 2*0 + 4*0 = 1^2.
a(7) = 1 since 7 = 2*1^2 + 0^2 + 2^2 + 1^2 with 1 + 0 + 2*2 + 4*1 = 3^2.
a(8) = 1 since 8 = 2*1^2 + 2^2 + 1^2 + 1^2 with 1 + 2 + 2*1 + 4*1 = 3^2.
a(9) = 1 since 9 = 2*2^2 + 0^2 + 1^2 + 0^2 with 2 + 0 + 2*1 + 4*0 = 2^2.
a(12) = 1 since 12 = 2*2^2 + 2^2 + 0^2 + 0^2 with 2 + 2 + 2*0 + 4*0 = 2^2.
a(14) = 1 since 14 = 2*0^2 + 2^2 + 1^2 + 3^2 with 0 + 2 + 2*1 + 4*3 = 4^2.
a(15) = 1 since 15 = 2*1^2 + 2^2 + 3^2 + 0^2 with 1 + 2 + 2*3 + 4*0 = 3^2.
a(22) = 1 since 22 = 2*1^2 + 4^2 + 2^2 + 0^2 with 1 + 4 + 2*2 + 4*0 = 3^2.
a(23) = 1 since 23 = 2*3^2 + 2^2 + 0^2 + 1^2 with 3 + 2 + 2*0 + 4*1 = 3^2.
a(24) = 1 since 24 = 2*0^2 + 4^2 + 2^2 + 2^2 with 0 + 4 + 2*2 + 4*2 = 4^2.
a(25) = 1 since 25 = 2*0^2 + 4^2 + 0^2 + 3^2 with 0 + 4 + 2*0 + 4*3 = 4^2.
a(36) = 1 since 36 = 2*3^2 + 1^2 + 4^2 + 1^2 with 3 + 1 + 2*4 + 4*1 = 4^2.
a(39) = 1 since 39 = 2*1^2 + 6^2 + 1^2 + 0^2 with 1 + 6 + 2*1 + 4*0 = 3^2.
a(44) = 1 since 44 = 2*3^2 + 0^2 + 1^2 + 5^2 with 3 + 0 + 2*1 + 4*5 = 5^2.
a(45) = 1 since 45 = 2*0^2 + 5^2 + 2^2 + 4^2 with 0 + 5 + 2*2 + 4*4 = 5^2.
a(60) = 1 since 60 = 2*2^2 + 6^2 + 4^2 + 0^2 with 2 + 6 + 2*4 + 4*0 = 4^2.
a(87) = 1 since 87 = 2*3^2 + 2^2 + 8^2 + 1^2 with 3 + 2 + 2*8 + 4*1 = 5^2.
a(98) = 1 since 98 = 2*4^2 + 1^2 + 8^2 + 1^2 with 4 + 1 + 2*8 + 4*1 = 5^2.
a(106) = 1 since 106 = 2*2^2 + 8^2 + 3^2 + 5^2 with 2 + 8 + 2*3 + 4*5 = 6^2.
a(110) = 1 since 110 = 2*6^2 + 5^2 + 3^2 + 2^2 with 6 + 5 + 2*3 + 4*2 = 5^2.
a(111) = 1 since 111 = 2*5^2 + 3^2 + 6^2 + 4^2 with 5 + 3 + 2*6 + 4*4 = 6^2.
a(183) = 1 since 183 = 2*3^2 + 10^2 + 4^2 + 7^2 with 3 + 10 + 2*4 + 4*7 = 7^2.


MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n2*w^2x^2y^2]&&SQ[w+x+2y+4*Sqrt[n2*w^2x^2y^2]], r=r+1], {w, 0, Sqrt[n/2]}, {x, 0, Sqrt[n2*w^2]}, {y, 0, Sqrt[n2*w^2x^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]


CROSSREFS

Cf. A000290, A271518, A275297, A275301, A275344.
Sequence in context: A282459 A016154 A307332 * A029343 A137992 A047654
Adjacent sequences: A275406 A275407 A275408 * A275410 A275411 A275412


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jul 26 2016


STATUS

approved



