The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275409 Number of ordered ways to write n as 2*w^2 + x^2 + y^2 + z^2 with w + x + 2*y + 4*z a square, where w,x,y,z are nonnegative integers. 1
 1, 2, 1, 0, 2, 2, 2, 1, 1, 1, 0, 3, 1, 2, 1, 1, 3, 2, 5, 3, 4, 3, 1, 1, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 7, 3, 1, 6, 2, 1, 2, 3, 4, 5, 1, 1, 3, 5, 3, 3, 4, 3, 7, 3, 2, 4, 3, 4, 4, 3, 1, 4, 5, 3, 6, 4, 4, 4, 5, 7, 7, 3, 6, 5, 5, 4, 3, 11, 2, 2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjecture: (i) a(n) > 0 except for n = 3, 10, and a(n) = 1 only for n = 0, 2, 7, 8, 9, 12, 14, 15, 22, 23, 24, 25, 36, 39, 44, 45, 60, 87, 98, 106, 110, 111, 183. (ii) Any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers such that x + 2*y + 3*z - 3*w is a square. (iii) For each triple (a,b,c) = (1,2,1), (1,2,3), (1,3,1), (2,4,1), (2,4,2), (2,4,3), (2,4,4), (2,4,8), (8,9,5), any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers such that a*x + b*y - c*z is a square. (iv) Any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers such that x + 2*y - 2*z is twice a nonnegative cube. Also, each natural number can be written as x^2 + y^2 + z^2 + 2*w^3 with x,y,z,w nonnegative integers such that x + 3*y - z is a square. See also A275344 and A275301 for related conjectures. We are able to show that each natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w integers such that x + y + z = t^2 for some t = 0, 1, 2. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..10000 Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016. EXAMPLE a(2) = 1 since 2 = 2*1^2 + 0^2 + 0^2 + 0^2 with 1 + 0 + 2*0 + 4*0 = 1^2. a(7) = 1 since 7 = 2*1^2 + 0^2 + 2^2 + 1^2 with 1 + 0 + 2*2 + 4*1 = 3^2. a(8) = 1 since 8 = 2*1^2 + 2^2 + 1^2 + 1^2 with 1 + 2 + 2*1 + 4*1 = 3^2. a(9) = 1 since 9 = 2*2^2 + 0^2 + 1^2 + 0^2 with 2 + 0 + 2*1 + 4*0 = 2^2. a(12) = 1 since 12 = 2*2^2 + 2^2 + 0^2 + 0^2 with 2 + 2 + 2*0 + 4*0 = 2^2. a(14) = 1 since 14 = 2*0^2 + 2^2 + 1^2 + 3^2 with 0 + 2 + 2*1 + 4*3 = 4^2. a(15) = 1 since 15 = 2*1^2 + 2^2 + 3^2 + 0^2 with 1 + 2 + 2*3 + 4*0 = 3^2. a(22) = 1 since 22 = 2*1^2 + 4^2 + 2^2 + 0^2 with 1 + 4 + 2*2 + 4*0 = 3^2. a(23) = 1 since 23 = 2*3^2 + 2^2 + 0^2 + 1^2 with 3 + 2 + 2*0 + 4*1 = 3^2. a(24) = 1 since 24 = 2*0^2 + 4^2 + 2^2 + 2^2 with 0 + 4 + 2*2 + 4*2 = 4^2. a(25) = 1 since 25 = 2*0^2 + 4^2 + 0^2 + 3^2 with 0 + 4 + 2*0 + 4*3 = 4^2. a(36) = 1 since 36 = 2*3^2 + 1^2 + 4^2 + 1^2 with 3 + 1 + 2*4 + 4*1 = 4^2. a(39) = 1 since 39 = 2*1^2 + 6^2 + 1^2 + 0^2 with 1 + 6 + 2*1 + 4*0 = 3^2. a(44) = 1 since 44 = 2*3^2 + 0^2 + 1^2 + 5^2 with 3 + 0 + 2*1 + 4*5 = 5^2. a(45) = 1 since 45 = 2*0^2 + 5^2 + 2^2 + 4^2 with 0 + 5 + 2*2 + 4*4 = 5^2. a(60) = 1 since 60 = 2*2^2 + 6^2 + 4^2 + 0^2 with 2 + 6 + 2*4 + 4*0 = 4^2. a(87) = 1 since 87 = 2*3^2 + 2^2 + 8^2 + 1^2 with 3 + 2 + 2*8 + 4*1 = 5^2. a(98) = 1 since 98 = 2*4^2 + 1^2 + 8^2 + 1^2 with 4 + 1 + 2*8 + 4*1 = 5^2. a(106) = 1 since 106 = 2*2^2 + 8^2 + 3^2 + 5^2 with 2 + 8 + 2*3 + 4*5 = 6^2. a(110) = 1 since 110 = 2*6^2 + 5^2 + 3^2 + 2^2 with 6 + 5 + 2*3 + 4*2 = 5^2. a(111) = 1 since 111 = 2*5^2 + 3^2 + 6^2 + 4^2 with 5 + 3 + 2*6 + 4*4 = 6^2. a(183) = 1 since 183 = 2*3^2 + 10^2 + 4^2 + 7^2 with 3 + 10 + 2*4 + 4*7 = 7^2. MATHEMATICA SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0; Do[If[SQ[n-2*w^2-x^2-y^2]&&SQ[w+x+2y+4*Sqrt[n-2*w^2-x^2-y^2]], r=r+1], {w, 0, Sqrt[n/2]}, {x, 0, Sqrt[n-2*w^2]}, {y, 0, Sqrt[n-2*w^2-x^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}] CROSSREFS Cf. A000290, A271518, A275297, A275301, A275344. Sequence in context: A282459 A016154 A307332 * A029343 A137992 A047654 Adjacent sequences: A275406 A275407 A275408 * A275410 A275411 A275412 KEYWORD nonn AUTHOR Zhi-Wei Sun, Jul 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 04:26 EDT 2024. Contains 372921 sequences. (Running on oeis4.)