login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of odd prime factors (with multiplicity) of generalized Fermat number 3^(2^n) + 1.
4

%I #29 Jul 27 2016 10:20:29

%S 0,1,1,2,1,1,1,5,4,6

%N Number of odd prime factors (with multiplicity) of generalized Fermat number 3^(2^n) + 1.

%H Arkadiusz Wesolowski, <a href="/A275377/a275377.txt">A 93-digit prime factor of b(9)</a>

%F a(n) = A001222(A059919(n)) - 1 for n > 0. - _Felix Fröhlich_, Jul 25 2016

%e b(n) = (3^(2^n) + 1)/2.

%e Complete Factorizations

%e b(0) = 2

%e b(1) = 5

%e b(2) = 41

%e b(3) = 17*193

%e b(4) = 21523361

%e b(5) = 926510094425921

%e b(6) = 1716841910146256242328924544641

%e b(7) = 257*275201*138424618868737*3913786281514524929*P21

%e b(8) = 12289*8972801*891206124520373602817*P90

%e b(9) = 134382593*22320686081*12079910333441*100512627347897906177*P93*P101

%o (PARI) a001222(n) = bigomega(n)

%o a059919(n) = 3^(2^n)+1

%o a(n) = if(n==0, 0, a001222(a059919(n))-1) \\ _Felix Fröhlich_, Jul 25 2016

%Y Cf. A059919, A273945.

%K nonn,hard,more

%O 0,4

%A _Arkadiusz Wesolowski_, Jul 25 2016

%E a(9) was found in 2008 by Tom Womack