login
A275352
T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,1) or (-1,-2) and new values introduced in order 0..2.
11
1, 2, 2, 5, 14, 5, 14, 81, 54, 14, 41, 486, 288, 216, 41, 122, 2916, 1536, 1024, 864, 122, 365, 17496, 8192, 6156, 4100, 3456, 365, 1094, 104976, 43712, 38256, 31536, 16956, 13824, 1094, 3281, 629856, 235072, 239112, 266116, 175152, 70272, 55296, 3281
OFFSET
1,2
COMMENTS
Table starts
....1......2.......5........14..........41..........122............365
....2.....14......81.......486........2916........17496.........104976
....5.....54.....288......1536........8192........43712.........235072
...14....216....1024......6156.......38256.......239112........1530060
...41....864....4100.....31536......266116......2292520.......20917472
..122...3456...16956....175152.....2130176.....26615196......351504904
..365..13824...70272....982152....17258544....306863916.....5814135340
.1094..55296..291320...5645376...142784608...3682615020...101593710948
.3281.221184.1211092..33154200..1211010160..45094867336..1804283175916
.9842.884736.5070832.197081664.10285035212.548546009720.31575745629020
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 4*a(n-1) for n>3
k=3: [order 17] for n>20
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) for n>3
n=3: [order 18] for n>20
n=4: [order 41] for n>43
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..2. .0..1..1..2. .0..1..0..0. .0..1..1..1. .0..1..2..1
..1..0..1..0. .2..2..2..0. .1..2..2..0. .1..2..2..0. .0..2..1..2
..0..2..0..1. .0..2..0..0. .2..2..2..1. .2..2..0..0. .0..1..2..0
..2..2..1..0. .0..1..1..1. .0..0..1..1. .0..0..1..1. .0..2..1..0
CROSSREFS
Column 1 is A007051(n-1).
Column 2 is A208428.
Row 1 is A007051(n-1).
Sequence in context: A268003 A208434 A336110 * A282056 A199655 A241114
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 24 2016
STATUS
approved