%I
%S 1,1,2,44,4983,7565342,2414249587694,56130437054842366160898
%N Number of labeled spanning blobs on n vertices.
%C A clutter is a set of sets comprising a connected antichain in the Boolean algebra B_n. A blob is defined as a clutter that cannot be capped by a tree.
%H Louis J. Billera, <a href="http://dx.doi.org/10.1016/00958956(71)900335">On the Composition and Decomposition of Clutters</a>, J. Combinatorial Theory 11, 234245 (1971).
%H Gus Wiseman, <a href="https://docs.google.com/document/d/1Okx0eXfCCAVM0lbZ2NoFxIJdprOMdBaxZf26IuSXSs/pub">Every Clutter is a Tree of Blobs (preprint)</a>
%F Every clutter is a tree of blobs, so we have A048143(n) = Sum_p n^(k1) Prod_i a(p_i+1), where the sum is over all set partitions U(p_1,...,p_k) = {1,...,n1}.
%e The a(3)=2 blobs are: {{1,2,3}}, {{1,2},{1,3},{2,3}}.
%Y Cf. A048143 (clutters), A030019 (hypertrees), A052888 (tail trees).
%K nonn,more
%O 1,3
%A _Gus Wiseman_, Jul 22 2016
