login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (28*10^k - 97)/3 is prime.
0

%I #24 May 02 2024 04:26:13

%S 1,5,8,20,27,56,74,81,107,217,294,326,525,645,667,764,863,1885,1961,

%T 2913,3056,3192,3327,5480,8455,22797,50147,89141,96265

%N Numbers k such that (28*10^k - 97)/3 is prime.

%C For k > 1, numbers k such that the digit 9 followed by k-2 occurrences of the digit 3 followed by the digits 01 is prime (see Example section).

%C a(30) > 10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 93w01</a>.

%e 5 is in this sequence because (28*10^5-97)/3 = 877 is prime.

%e Initial terms and associated primes:

%e a(1) = 1, 61;

%e a(2) = 5, 933301;

%e a(3) = 8, 933333301;

%e a(4) = 20, 933333333333333333301;

%e a(5) = 27, 9333333333333333333333333301, etc.

%t Select[Range[0, 100], PrimeQ[(28*10^#-97)/3 && # > 0] &] (* Corrected by _Georg Fischer_, Jul 22 2019 *)

%o (PARI) is(n)=ispseudoprime((28*10^n-97)/3) \\ _Charles R Greathouse IV_, Jul 21 2016

%o (Magma) [n: n in [1..500] | IsPrime((28*10^n-97) div 3)]; // _Vincenzo Librandi_, Jul 21 2016

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more

%O 1,2

%A _Robert Price_, Jul 20 2016