login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes between n and n+log(n)^2.
4

%I #8 Jul 22 2016 22:12:56

%S 0,0,0,1,1,1,0,1,2,2,1,2,2,2,2,3,2,2,1,1,2,3,2,2,2,2,3,3,2,3,2,3,3,3,

%T 4,4,3,3,3,4,3,3,2,2,3,3,3,3,3,3,3,4,3,3,4,4,5,5,4,4,3,4,4,4,4,5,4,4,

%U 4,4,4,4,3,3,3,3,3,3,3,3,3,4,3,4,4,4

%N Number of primes between n and n+log(n)^2.

%C According to Schinzel's formulation of Cramer's conjecture, a(n) > 0 for n > 7; see Guy.

%D R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, page 11.

%H Clark Kimberling, <a href="/A275235/b275235.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ log(n). - _Ilya Gutkovskiy_, Jul 22 2016

%t Table[PrimePi[n + Log[n]^2] - PrimePi[n], {n, 1, 200}]

%o (PARI) a(n) = primepi(n+log(n)^2) - primepi(n) \\ _Felix Fröhlich_, Jul 21 2016

%Y Cf. A000040.

%K nonn,easy

%O 1,9

%A _Clark Kimberling_, Jul 21 2016