The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275210 Expansion of (A(x)^2-A(x^2))/2 where A(x) = A001006(x)-1. 2

%I #12 May 16 2017 08:51:53

%S 0,0,0,2,5,17,45,129,349,970,2658,7364,20363,56634,157750,441084,

%T 1236173,3474672,9789568,27648486,78254719,221951037,630717569,

%U 1795576937,5120472435,14625574662,41837913310,119851980508,343798008165,987445317761,2839518208661

%N Expansion of (A(x)^2-A(x^2))/2 where A(x) = A001006(x)-1.

%C Analog of A216785 with Motzkin numbers replacing connected graph counts.

%H Alois P. Heinz, <a href="/A275210/b275210.txt">Table of n, a(n) for n = 0..1000</a>

%F a(2n+1) = A275209(2n+1).

%p b:= proc(n) option remember; `if`(n<2, 1,

%p ((3*(n-1))*b(n-2)+(1+2*n)*b(n-1))/(n+2))

%p end:

%p a:= proc(n) option remember; add(b(j)*b(n-j), j=1..n/2)-

%p `if`(n=0 or n::odd, 0, (t->t*(t+1)/2)(b(n/2)))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jul 19 2016

%t b[n_] := b[n] = If[n<2, 1, ((3*(n-1))*b[n-2] + (1+2*n)*b[n-1])/(n+2)];

%t a[n_] := a[n] = Sum[b[j]*b[n - j], {j, 1, n/2}] - If[n == 0 || OddQ[n], 0, Function[t, t*(t + 1)/2][b[n/2]]];

%t Table[a[n], {n, 0, 40}] (* _Jean-Fran├žois Alcover_, May 16 2017, after _Alois P. Heinz_ *)

%Y Cf. A275209.

%K nonn

%O 0,4

%A _R. J. Mathar_, Jul 19 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 18:11 EDT 2024. Contains 373359 sequences. (Running on oeis4.)