login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.
1

%I #8 Jan 31 2019 19:36:36

%S 4,36,129,568,2545,11092,48451,212897,933888,4092697,17946318,

%T 78700481,345078541,1513083403,6634687537,29092060534,127563508661,

%U 559344843153,2452635533674,10754397617406,47156241405767,206772290181505

%N Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

%H R. H. Hardin, <a href="/A275133/b275133.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) + 8*a(n-2) + 22*a(n-3) + 36*a(n-4) + 7*a(n-5) - 48*a(n-6) - 4*a(n-7) + 15*a(n-8) - 18*a(n-9) for n>11.

%F Empirical g.f.: x*(4 + 32*x + 61*x^2 + 63*x^3 + 9*x^4 - 159*x^5 - 201*x^6 + 113*x^7 + 39*x^8 - 104*x^9 + 48*x^10) / (1 - x - 8*x^2 - 22*x^3 - 36*x^4 - 7*x^5 + 48*x^6 + 4*x^7 - 15*x^8 + 18*x^9). - _Colin Barker_, Jan 31 2019

%e Some solutions for n=4:

%e ..0..0..1..1. .0..0..1..1. .0..0..1..2. .0..0..1..0. .0..0..0..1

%e ..2..2..0..0. .2..2..0..0. .1..2..0..0. .2..2..2..2. .1..1..2..0

%e ..1..1..1..2. .0..1..2..2. .0..1..1..1. .0..0..1..1. .0..0..1..2

%e ..0..0..0..1. .2..0..0..0. .2..2..0..0. .2..2..0..0. .2..2..0..0

%Y Row 4 of A275131.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 17 2016