login
Number of binary strings of length n avoiding 4-antipowers.
1

%I #8 Mar 05 2020 02:40:41

%S 1,2,4,8,16,32,64,128,232,432,808,1512,1644,2258,3228,5034,3648,4170,

%T 5166,6780,4484,5136,5874,7484,6520,8438,10858,13134,11396,13366,

%U 17008,20690,20142,22822,27448,33384,34314,37118,41442,47272,50132,54950,60632,67572,71028,78086,85828,92608,95542,102182,112008

%N Number of binary strings of length n avoiding 4-antipowers.

%C A 4-antipower is 4 consecutive blocks, no two of which are the same, like (11)(10)(01)(00). By "avoid" we mean the binary string has no contiguous block within it that is a 4-antipower.

%H G. Fici, A. Restivo, M. Silva, and L. Q. Zamboni, <a href="http://arxiv.org/abs/1606.02868">Anti-powers in infinite words</a>, arxiv preprint, 1606.02868v1 [cs.DM], June 9 2016.

%H Lukas Fleischer, Samin Riasat, Jeffrey Shallit, <a href="https://arxiv.org/abs/1912.08147">New Bounds on Antipowers in Binary Words</a>, arXiv:1912.08147 [cs.FL], 2019.

%K nonn

%O 0,2

%A _Jeffrey Shallit_, Jul 15 2016