login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275025
Number of pairs of functions (f,g) on [n] such that fg is an idempotent.
1
1, 1, 14, 411, 21208, 1703145, 195285456, 30113813863, 5985071842688, 1485696848042385, 449588756524844800, 162668114715527356551, 69259775641873646754816, 34243366782512243213286169, 19439795735713938153732810752, 12549399357405863545478828022375
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k = 0..n} ((n!)^2/k!) Sum_{j = 0..n-k} 1/(j!(n-k-j)!) Sum_{l = 0..j} k^(n-k-j+l) n^(n-k-l) stirling2(j,l)/(n-k-l)!.
EXAMPLE
The fourteen pairs of functions on [2] are: ([1,1], [1,1]), ([1,1], [1,2]), ([1,1], [2,1]), ([1,1], [2,2]), ([1,2], [1,1]), ([1,2], [1,2]), ([1,2], [2,2]), ([2,1], [1,1]), ([2,1], [2,1]), ([2,1], [2,2]), ([2,2], [1,1]), ([2,2], [1,2]), ([2,2], [2,1]), ([2,2], [2,2]).
CROSSREFS
Sequence in context: A353609 A222904 A239785 * A236156 A258392 A269504
KEYWORD
nonn
AUTHOR
David Einstein, Nov 12 2016
STATUS
approved