Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 May 25 2024 17:37:41
%S 1,2,3,10,19,35,43,80,107,143,199,218,255,304,353,560,904,996,1051,
%T 6141,8075,9913,11151,28469,75244,108960,122592,178206,187471,257431
%N Numbers k such that (5*10^k + 91) / 3 is prime.
%C For k > 1, numbers k such that the digit 1 followed by k-2 occurrences of the digit 6 followed by the digits 97 is prime (see Example section).
%C a(31) > 3*10^5.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 16w97</a>.
%e 3 is in this sequence because (5*10^3 + 91) / 3 = 1697 is prime.
%e Initial terms and associated primes:
%e a(1) = 1, 47;
%e a(2) = 2, 197;
%e a(3) = 3, 1697;
%e a(4) = 10, 16666666697;
%e a(5) = 19, 16666666666666666697, etc.
%t Select[Range[0, 100000], PrimeQ[(5*10^# + 91) / 3] &]
%o (PARI) is(n)=ispseudoprime((5*10^n + 91)/3) \\ _Charles R Greathouse IV_, Jun 13 2017
%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
%K nonn,more
%O 1,2
%A _Robert Price_, Nov 12 2016
%E a(26)-a(29) from _Robert Price_, Apr 28 2018
%E a(30) from _Robert Price_, Oct 25 2023