login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of terms required in the Basel Problem, i.e., Sum_{m >= 1} 1/m^2, for the first appearance of n correct digits in the decimal expansion of Pi^2/6 to occur.
3

%I #67 May 11 2019 18:34:47

%S 1,22,203,1071,29354,245891,14959260,14959260,146023209,1178930480,

%T 20735515065,121559317130,4416249685106,37826529360487,

%U 155364605873808,2291095531474075,27417981382118579,154501831890087986,2116782166626093033,13809261875873749757

%N a(n) is the number of terms required in the Basel Problem, i.e., Sum_{m >= 1} 1/m^2, for the first appearance of n correct digits in the decimal expansion of Pi^2/6 to occur.

%C a(n) = round(1/(floor((1/6)Pi^2 * 10^(n-1))/10^(n-1))) for all n up to at least n=1000 (and it can be shown that this formula almost certainly holds for all n beyond that; see A126809 for a similar problem). - _Jon E. Schoenfield_, Nov 06 2016, Nov 12 2016

%H Jon E. Schoenfield, <a href="/A274982/b274982.txt">Table of n, a(n) for n = 1..1000</a>

%H Ed Sandifer, <a href="http://eulerarchive.maa.org/hedi/HEDI-2003-12.pdf">How Euler Did It: Estimating the Basel Problem</a>, MAA Online (2003).

%e a(2) = 22 because 22 terms (Sum_{m = 1..22} 1/m^2) are required for the first two decimal digits of Pi^2/6 to occur for the first time.

%o (Perl) use ntheory ":all"; use bignum try=>"GMP"; my ($dig,$sum,$exp) = (0, 0, (Pi(40)**2)/6); $exp =~ s/\.//; for my $m (1 .. 1e9) { $sum += 1/($m*$m); (my $str = $sum) =~ s/\.//; print ++$dig, " $m\n" while length($str) > $dig && index($exp, substr($str,0,$dig+1)) == 0; } # _Dana Jacobsen_, Sep 29 2016

%Y Cf. A013661, A126809.

%K nonn,base

%O 1,2

%A _G. L. Honaker, Jr._, Sep 23 2016

%E a(7)-a(11) from _Dana Jacobsen_, Oct 03 2016