login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274959
T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-1,-1) (-2,0) or (0,-2) and new values introduced in order 0..2.
7
1, 2, 2, 3, 9, 3, 6, 24, 24, 6, 12, 72, 90, 72, 12, 24, 216, 384, 384, 216, 24, 48, 648, 1638, 2376, 1638, 648, 48, 96, 1944, 6936, 14406, 14406, 6936, 1944, 96, 192, 5832, 29370, 87780, 126540, 87780, 29370, 5832, 192, 384, 17496, 124416, 536406, 1119744
OFFSET
1,2
COMMENTS
Table starts
...1.....2.......3.........6.........12...........24.............48
...2.....9......24........72........216..........648...........1944
...3....24......90.......384.......1638.........6936..........29370
...6....72.....384......2376......14406........87780.........536406
..12...216....1638.....14406.....126540......1119744........9902040
..24...648....6936.....87780....1119744.....14362920......183551766
..48..1944...29370....536406....9902040....183551766.....3403449396
..96..5832..124416...3278016...87416934...2348053596....63272648886
.192.17496..527046..20027574..772181640..30087735576..1177544081274
.384.52488.2232600.122367012.6822635046.385522530402.21902996126304
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: a(n) = 3*a(n-1) for n>3
k=3: a(n) = 4*a(n-1) +4*a(n-3) +a(n-4) for n>5
k=4: [order 9] for n>11
k=5: [order 25] for n>28
k=6: [order 81] for n>83
EXAMPLE
Some solutions for n=4 k=4
..0..1..2..0. .0..1..1..0. .0..1..2..0. .0..1..2..0. .0..1..1..2
..1..2..0..1. .1..1..0..2. .1..2..0..1. .2..2..0..0. .1..1..2..2
..2..0..1..2. .1..0..2..1. .2..0..1..2. .2..0..0..2. .1..2..2..0
..2..1..1..2. .2..0..1..1. .0..1..1..0. .0..0..2..1. .0..0..1..1
CROSSREFS
Column 1 is A003945(n-2).
Sequence in context: A132812 A203371 A181206 * A143307 A278463 A276248
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 12 2016
STATUS
approved