%I #49 Sep 16 2017 03:45:51
%S 1,2,3,2,3,2,3,1,3,1,2,1,3,1,2,1,3,1,2,3,2,1,2,3,1,3,2,1,2,3,1,3,2,1,
%T 2,3,1,2,1,3,2,3,1,2,3,2,1,3,2,3,1,2,3,2,1,3,2,3,1,2,3,1,3,2,1,3,1,2,
%U 3,1,2,1,3,2,1,3,1,2,3,1,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,2,1,2,3,1,2,3,1,3,2,1
%N Spiral constructed on the nodes of the triangular net in which each new term is the least positive integer distinct from its neighbors.
%C The structure of the spiral has the following properties:
%C 1) Every 1 is surrounded by three equidistant 2's and three equidistant 3's.
%C 2) Every 2 is surrounded by three equidistant 1's and three equidistant 3's.
%C 3) Every 3 is surrounded by three equidistant 1's and three equidistant 2's.
%C 4) Diagonals are periodic sequences with period 3 (A010882 and A130784).
%C From _Juan Pablo Herrera P._, Nov 16 2016: (Start)
%C 5) Every hexagon with a 1 in its center is the same hexagon as the one in the middle of the spiral.
%C 6) Every triangle whose number of numbers is divisible by 3 has the same number of 1's, 2's, and 3's. For example, a triangle with 6 numbers, has two 1's, two 2's, and two 3's. (End)
%C a(n) = a(n-2) if n > 2 is in A014591, otherwise a(n) = 6 - a(n-1)-a(n-2). - _Robert Israel_, Sep 15 2017
%H Robert Israel, <a href="/A274921/b274921.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = A274920(n) + 1.
%e Illustration of initial terms as a spiral:
%e .
%e . 3 - 1 - 2 - 3 - 1 - 2
%e . / \
%e . 1 2 - 3 - 1 - 2 - 3 1
%e . / / \ \
%e . 2 3 1 - 2 - 3 - 1 2 3
%e . / / / \ \ \
%e . 3 1 2 3 - 1 - 2 3 1 2
%e . / / / / \ \ \ \
%e . 1 2 3 1 2 - 3 1 2 3 1
%e . / / / / / \ \ \ \ \
%e . 2 3 1 2 3 1 - 2 3 1 2 3
%e . \ \ \ \ \ / / / /
%e . 1 2 3 1 2 - 3 - 1 2 3 1
%e . \ \ \ \ / / /
%e . 3 1 2 3 - 1 - 2 - 3 1 2
%e . \ \ \ / /
%e . 2 3 1 - 2 - 3 - 1 - 2 3
%e . \ \ /
%e . 1 2 - 3 - 1 - 2 - 3 - 1
%e . \
%e . 3 - 1 - 2 - 3 - 1 - 2
%e .
%p A[0]:= 1: A[1]:= 2: A[2]:= 3:
%p b:= 3: c:= 2: d:= 2: e:= 1: f:= 1:
%p for n from 3 to 200 do
%p if n = b then
%p r:= b; b:= c + d - f + 1; f:= e; e:= d; d:= c; c:= r;
%p A[n]:= A[n-2];
%p else
%p A[n]:= 6 - A[n-1] - A[n-2];
%p fi
%p od:
%p seq(A[i],i=0..200); # _Robert Israel_, Sep 15 2017
%Y Cf. A001399, A010882, A130784, A253186, A274820, A274821, A274920, A275606, A275610.
%K nonn
%O 0,2
%A _Omar E. Pol_, Jul 11 2016