login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274902
Number of (not necessarily proper) edge colorings of the truncated cube using at most n colors.
2
1, 1432071648, 3126973271816997, 98382635718348789760, 303164900659243306968750, 214883849971608086273681376, 55244392622152479810398651758, 6760803201218467969357600653312, 469341657186247418838800529901095, 20833333333333465916666833583500000
OFFSET
1,2
LINKS
Marko R. Riedel et al., Truncated objects coloring, Mathematics Stack Exchange (Jul 10 2016).
Wikipedia, Truncated cube
FORMULA
a(n) = 1/48*n^36 + 1/8*n^21 + 1/16*n^20 + 1/8*n^19 + 1/12*n^18 + 1/6*n^12 + 1/4*n^9 + 1/6*n^6 = n^6*(n + 1)*(n^29 - n^28 + n^27 - n^26 + n^25 - n^24 + n^23 - n^22 + n^21 - n^20 + n^19 - n^18 + n^17 - n^16 + n^15 + 5*n^14 - 2*n^13 + 8*n^12 - 4*n^11 + 4*n^10 - 4*n^9 + 4*n^8 - 4*n^7 + 4*n^6 + 4*n^5 - 4 n^4 + 4*n^3 + 8*n^2 - 8*n + 8)/48.
EXAMPLE
Cycle index: 1/48*s[1]^36 + 1/8*s[2]^15*s[1]^6 + 1/16*s[2]^16*s[1]^4 + 1/8*s[2]^17*s[1]^2 + 1/12*s[2]^18 + 1/6*s[3]^12 + 1/4*s[4]^9 + 1/6*s[6]^6.
MATHEMATICA
Table[1/48 n^36 + 1/8 n^21 + 1/16 n^20 + 1/8 n^19 + 1/12 n^18 + 1/6 n^12 + 1/4 n^9 + 1/6 n^6, {n, 25}] (* Vincenzo Librandi, Jul 11 2016 *)
PROG
(Magma) [1/48*n^36+1/8*n^21+1/16*n^20+1/8*n^19+1/12*n^18+1/6*n^12+1/4*n^9
+1/6*n^6: n in [1..20]]; // Vincenzo Librandi, Jul 11 2016
CROSSREFS
Sequence in context: A333377 A185931 A069320 * A129249 A165736 A372106
KEYWORD
nonn,easy
AUTHOR
Marko Riedel, Jul 10 2016
STATUS
approved