Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 23 2020 13:28:13
%S 1,1,2,2,4,2,4,6,12,12,4,8,8,20,40,48,32,10,20,24,16,70,140,180,160,
%T 80,28,56,72,64,32,252,504,672,672,480,192,84,168,224,224,160,64,924,
%U 1848,2520,2688,2240,1344,448,264,528,720,768,640,384,128
%N A statistic on orbital systems over n sectors: the number of orbitals with k returns.
%C The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
%C When a segment of an orbital starts at a point on the central circle this point is called a 'return' of the orbital if it is not the origin.
%C If an orbital touches the central circle only in the origin it is called a prime orbital. Column 0 counts the prime orbitals over n sectors.
%C A108747 is a subtriangle.
%H Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/Orbitals">Orbitals</a>
%F For even n>0: T(n,k) = 2^(k+1)*(k+1)*binomial(n-k-1,n/2)/(n-k-1) for k=0..n/2-1 (from A108747).
%e Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
%e [ n] [k=0,1,2,...] [row sum]
%e [ 0] [1] 1
%e [ 1] [1] 1
%e [ 2] [2] 2
%e [ 3] [2, 4] 6
%e [ 4] [2, 4] 6
%e [ 5] [6, 12, 12] 30
%e [ 6] [4, 8, 8] 20
%e [ 7] [20, 40, 48, 32] 140
%e [ 8] [10, 20, 24, 16] 70
%e [ 9] [70, 140, 180, 160, 80] 630
%e [10] [28, 56, 72, 64, 32] 252
%e [11] [252, 504, 672, 672, 480, 192] 2772
%e T(6,0) = 4 because the following 4 orbitals stay above or below the central
%e circle: [-1, -1, -1, 1, 1, 1], [-1, -1, 1, -1, 1, 1], [1, 1, -1, 1, -1, -1],
%e [1, 1, 1, -1, -1, -1].
%o (Sage) # uses[unit_orbitals from A274709]
%o from itertools import accumulate
%o # Brute force counting
%o def orbital_returns(n):
%o if n == 0: return [1]
%o S = [0]*((n+1)//2)
%o for u in unit_orbitals(n):
%o L = list(accumulate(u))
%o Z = len(list(filter(lambda z: z == 0, L)))
%o S[Z-1] += 1 # exclude origin
%o return S
%o for n in (0..10): print(orbital_returns(n))
%Y Cf. A056040 (row sum), A108747, A232500, A241543 (col. 0).
%Y Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274880 (restarts), A274881 (ascent).
%K nonn,tabf
%O 0,3
%A _Peter Luschny_, Jul 11 2016