login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions of [n] such that the difference between each element and its block index is a multiple of ten.
2

%I #9 May 15 2018 08:35:11

%S 1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10,11,23,46,89,168,311,566,

%T 1013,1780,3059,5106,13283,31683,71545,155833,331139,691387,1424525,

%U 2902605,5848135,11610871,34108236,95170569,254432006,657159051,1650540916

%N Number of set partitions of [n] such that the difference between each element and its block index is a multiple of ten.

%H Alois P. Heinz, <a href="/A274843/b274843.txt">Table of n, a(n) for n = 0..953</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%e a(10) = 1: 1|2|3|4|5|6|7|8|9|(10).

%e a(11) = 2: 1(11)|2|3|4|5|6|7|8|9|(10), 1|2|3|4|5|6|7|8|9|(10)|(11).

%p b:= proc(n, m, t) option remember; `if`(n=0, 1,

%p add(`if`(irem(j-t, 10)=0, b(n-1, max(m, j),

%p irem(t+1, 10)), 0), j=1..m+1))

%p end:

%p a:= n-> b(n, 0, 1):

%p seq(a(n), n=0..50);

%t b[n_, m_, t_] := b[n, m, t] = If[n == 0, 1, Sum[If[Mod[j - t, 10] == 0, b[n - 1, Max[m, j], Mod[t + 1, 10]], 0], {j, 1, m + 1}]];

%t a[n_] := b[n, 0, 1];

%t Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, May 15 2018, after _Alois P. Heinz_ *)

%Y Column k=10 of A274835.

%K nonn

%O 0,12

%A _Alois P. Heinz_, Jul 08 2016