login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Diagonal of the rational function 1/(1-(wxyz + wxy + wxz + wy + wz + xy + xz + y + z)).
1

%I #24 Jun 27 2023 09:21:00

%S 1,9,241,9129,402321,19321689,981044401,51794295849,2814649754641,

%T 156399050208729,8845463571211521,507517525088436729,

%U 29468616564702121041,1728353228376135226329,102242911938342248555121,6093340217607472063134249,365501683327659682186607121,22049503920365906645420399769

%N Diagonal of the rational function 1/(1-(wxyz + wxy + wxz + wy + wz + xy + xz + y + z)).

%H Vaclav Kotesovec, <a href="/A274789/b274789.txt">Table of n, a(n) for n = 0..548</a>

%H A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv:1507.03227 [math-ph], 2015.

%H Jacques-Arthur Weil, <a href="http://www.unilim.fr/pages_perso/jacques-arthur.weil/diagonals/">Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendreTransform.html">Legendre Transform</a>

%F 0 = (-x^2+66*x^3+x^4-132*x^5+x^6+66*x^7-x^8)*y''' + (-3*x+303*x^2-396*x^3-594*x^4+405*x^5+291*x^6-6*x^7)*y'' + (-1+224*x-937*x^2+112*x^3+665*x^4+200*x^5-7*x^6)*y' + (9-169*x+254*x^2+30*x^3+5*x^4-x^5)*y, where y is g.f.

%F From _Vaclav Kotesovec_, Mar 19 2023: (Start)

%F Recurrence: (n-2)*n^3*(2*n - 5)*a(n) = (2*n - 5)*(2*n - 1)*(34*n^3 - 102*n^2 + 76*n - 17)*a(n-1) - (2*n - 3)*(134*n^4 - 804*n^3 + 1606*n^2 - 1200*n + 291)*a(n-2) + (2*n - 5)*(2*n - 1)*(34*n^3 - 204*n^2 + 382*n - 211)*a(n-3) - (n-3)^3*(n-1)*(2*n - 1)*a(n-4).

%F a(n) ~ 17^(1/4) * (33 + 8*sqrt(17))^(n + 1/2) / (16 * Pi^(3/2) * n^(3/2)). (End)

%F From _Peter Bala_, Jun 26 2023: (Start)

%F a(n) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k,k)*binomial(2*k,k)^2 = Sum_{k = 0..n} binomial(n+k,n-k)*binomial(2*k,k)^3, i.e., a(n) is the Legendre transform of A002894. Cf. A243945.

%F a(n) = hypergeom([1/2, 1/2, -n, n + 1], [1, 1, 1], -16).

%F O.g.f.: A(x) = Sum_{n >= 0} binomial(2*n,n)^3 * x^n / (1 - x)^(2*n+1). (End)

%p seq(simplify(hypergeom([1/2, 1/2, -n, n + 1], [1, 1, 1], -16)), n = 0..20); # _Peter Bala_, Jun 26 2023

%t a[n_] := SeriesCoefficient[1/(1 - (w x y z + w x y + w x z + w y + w z + x y + x z + y + z)), {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}];

%t Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Nov 16 2018 *)

%o (PARI)

%o my(x='x, y='y, z='z, w='w);

%o R = 1/(1-(w*x*y*z+w*x*y+w*x*z+w*y+w*z+x*y+x*z+y+z));

%o diag(n, expr, var) = {

%o my(a = vector(n));

%o for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));

%o for (k = 1, n, a[k] = expr;

%o for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));

%o return(a);

%o };

%o diag(12, R, [x,y,z,w])

%Y Cf. A002894, A243945, A268545-A268555.

%K nonn,easy

%O 0,2

%A _Gheorghe Coserea_, Jul 14 2016