login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of coefficients in functions that satisfy W_n(x) = W_{n-1}(x)^W_n(x), with W_0(x) = exp(x), as read by antidiagonals.
1

%I #13 Jul 05 2016 13:03:31

%S 1,1,1,1,1,1,1,3,1,1,1,16,5,1,1,1,125,43,7,1,1,1,1296,525,82,9,1,1,1,

%T 16807,8321,1345,133,11,1,1,1,262144,162463,28396,2729,196,13,1,1,1,

%U 4782969,3774513,734149,71721,4821,271,15,1,1,1,100000000,101808185,22485898,2300485,151376,7765,358,17,1,1,1,2357947691,3129525793,796769201,87194689,5787931,283321,11705,457,19,1,1,1,61917364224,108063152091,32084546824,3815719969,261066156,12567187,486396,16785,568,21,1,1

%N Table of coefficients in functions that satisfy W_n(x) = W_{n-1}(x)^W_n(x), with W_0(x) = exp(x), as read by antidiagonals.

%C See examples and formulas at A274391, which is the main entry for this table.

%C This entry is the same as table A274391, but read by antidiagonals from top down.

%F See formulas at A274391, which is the main entry for this table.

%e See examples at A274391, which is the main entry for this table.

%e This table begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, ...;

%e 1, 1, 3, 16, 125, 1296, 16807, 262144, ...;

%e 1, 1, 5, 43, 525, 8321, 162463, 3774513, ...;

%e 1, 1, 7, 82, 1345, 28396, 734149, 22485898, ...;

%e 1, 1, 9, 133, 2729, 71721, 2300485, 87194689, ...;

%e 1, 1, 11, 196, 4821, 151376, 5787931, 261066156, ...;

%e 1, 1, 13, 271, 7765, 283321, 12567187, 656778529, ...;

%e 1, 1, 15, 358, 11705, 486396, 24539593, 1457297878, ...;

%e ...

%e This table may also be written as a triangle:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 3, 1, 1;

%e 1, 16, 5, 1, 1;

%e 1, 125, 43, 7, 1, 1;

%e 1, 1296, 525, 82, 9, 1, 1;

%e 1, 16807, 8321, 1345, 133, 11, 1, 1;

%e 1, 262144, 162463, 28396, 2729, 196, 13, 1, 1;

%e 1, 4782969, 3774513, 734149, 71721, 4821, 271, 15, 1, 1;

%e 1, 100000000, 101808185, 22485898, 2300485, 151376, 7765, 358, 17, 1, 1;

%e ...

%o (PARI) {ITERATE(F, n, k) = my(G=x +x*O(x^k)); for(i=1, n, G=subst(G, x, F)); G}

%o {T(n, k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(exp(ITERATE(TREE, n, k)), k)}

%o /* Print this table as a rectangular array */

%o for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))

%o /* Print this table as a triangle */

%o for(n=0, 12, for(k=0, n, print1(T(k, n-k), ", "));print("") )

%o /* Print this table as a flattened array */

%o for(n=0, 12, for(k=0, n, print1(T(k, n-k), ", ")); )

%Y Cf. A274391.

%K nonn,tabl

%O 0,8

%A _Paul D. Hanna_, Jul 04 2016