login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A008277(3*n-1,n) / (n*(n+1)/2) for n>=1, where A008277 are the Stirling numbers of the second kind.
3

%I #12 Jul 06 2016 03:04:44

%S 1,5,161,14575,2671669,833607138,397984073059,270609861663900,

%T 248922595132336125,298037055910658382175,450755158919281716609746,

%U 840770855566250627155136090,1896671776639253430025972662743,5091278095597325836977485757711800,16040729445423172146341201903726496024,58625927208516621021861960954787323034320,246047331971247756894582227572712664877434765,1175344062721738572130662103242054758238706829325

%N a(n) = A008277(3*n-1,n) / (n*(n+1)/2) for n>=1, where A008277 are the Stirling numbers of the second kind.

%H Paul D. Hanna, <a href="/A274712/b274712.txt">Table of n, a(n) for n = 1..100</a>

%F a(n) = A274713(n) / (n*(n+1)/2), where A274713(n) is the number of partitions of a {3*n-1}-set into n nonempty subsets.

%F a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(3*n-1) / (n*(n+1)/2).

%F a(n) ~ sqrt(2) * 3^(3*n-1) * n^(2*n-7/2) / (exp(2*n) * c^n * (3-c)^(2*n-1) * sqrt(Pi*(1-c))), where c = -LambertW(-3*exp(-3)) = 0.1785606278779211... = -A226750. - _Vaclav Kotesovec_, Jul 06 2016

%o (PARI) {a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1) / (n*(n+1)/2)}

%o for(n=1, 20, print1(a(n), ", "))

%o (PARI) {a(n) = abs( stirling(3*n-1, n, 2) / (n*(n+1)/2) )}

%o for(n=1, 20, print1(a(n), ", "))

%o (PARI) {a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1)) / (n*(n+1)/2)}

%o for(n=1, 20, print1(a(n), ", "))

%Y Cf. A274713.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jul 03 2016