The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274697 Variation on Fermat's Diophantine m-tuple: 1 + the GCD of any two distinct terms is a square. 0
 0, 3, 15, 24, 48, 63, 120, 195, 255, 528, 960, 3024, 3363, 3480, 3720, 3843, 4095, 4623, 5475, 12099, 16383, 19599, 24963, 37635, 38415, 44943, 56643, 62499, 65535, 69168, 71823, 85263, 94863, 114243, 168099 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(1) = 0; for n>1, a(n) = smallest integer > a(n-1) such that GCD(a(n),a(i))+1 is square for all 1 <= i <= n-1. LINKS EXAMPLE After a(1)=0, a(2)=3, a(3)=15, we want m, the smallest number > 15 such that GCD(0,m)+1, GCD(3,m)+1 and GCD(15,m)+1 are squares: this is m = 24 = a(4). PROG (Sage) seq = [] prev_element = 0 seq.append( prev_element ) max_n = 35 for n in range(2, max_n+1):     next_element = prev_element + 1     while True:         all_match = True         for element in seq:             x = gcd( element, next_element ) + 1             if not ( is_square(x) ):                 all_match = False                 break         if all_match:             seq.append( next_element )             print(seq)             break         next_element = next_element + 1     prev_element = next_element print(seq) CROSSREFS Cf. A030063. Sequence in context: A101133 A061386 A057780 * A129024 A018982 A276938 Adjacent sequences:  A274694 A274695 A274696 * A274698 A274699 A274700 KEYWORD nonn AUTHOR Robert C. Lyons, Jul 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 11:16 EDT 2021. Contains 347642 sequences. (Running on oeis4.)