Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 14 2020 17:21:29
%S 1,2,6,133,97479304649455554938377
%N a(1) = 1; for n>1, a(n) = smallest number > a(n-1) such that a(1)*a(2)*...*a(n) + 1 is a Fibonacci number.
%C a(6) = (Fibonacci(7937)-1)/(a(2)*a(3)*a(4)*a(5)) has 1633 digits and it is thus too large to be included in Data section or in a b-file. - _Giovanni Resta_, Jul 05 2016
%e After a(1)=1 and a(2)=2, we want m, the smallest number > 2 such that 1*2*m+1 is a Fibonacci number: this is m = 6 = a(3).
%t a[1] = 1; a[n_] := a[n] = Block[{p = Times @@ Array[a, n-1], i, m}, For[i=2, ! (IntegerQ[m = (Fibonacci[i] - 1)/p] && m > a[n-1]), i++]; m]; Array[a, 6] (* _Giovanni Resta_, Jul 05 2016 *)
%o (Sage)
%o product = 1
%o seq = [ product ]
%o prev_fib_index = 0
%o max_n = 5
%o for n in range(2, max_n+1):
%o fib_index = prev_fib_index + 1
%o found = False
%o while not found:
%o fib_minus_1 = fibonacci(fib_index) - 1
%o if product.divides(fib_minus_1):
%o m = int( fib_minus_1 / product )
%o if m > seq[-1]:
%o product = product * m
%o seq.append( m )
%o found = True
%o prev_fib_index = fib_index
%o break
%o fib_index += 1
%o print(seq)
%Y Cf. A000045, A046966.
%K nonn
%O 1,2
%A _Robert C. Lyons_, Jul 04 2016
%E a(5) from _Giovanni Resta_, Jul 05 2016