login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A variation on Recamán's sequence (A005132): to get a(n), we first try to subtract n from a(n-1): a(n) = a(n-1)-n if positive and not already in the sequence; if not then we try to add n: a(n) = a(n-1)+n if not already in the sequence; if this fails we try to subtract 2n from a(n-1), or to add 2n to a(n-1), or to subtract 3n, or to add 3n, etc., until one of these produces a positive number not already in the sequence.
5

%I #55 May 06 2021 09:45:15

%S 0,1,3,6,2,7,13,20,12,21,11,22,10,23,9,24,8,25,43,62,42,63,41,18,66,

%T 91,65,38,94,123,93,124,92,59,127,162,126,89,51,90,50,132,174,131,87,

%U 177,223,176,128,79,29,80,28,81,27,82,26,83,141,200,140,201,139

%N A variation on Recamán's sequence (A005132): to get a(n), we first try to subtract n from a(n-1): a(n) = a(n-1)-n if positive and not already in the sequence; if not then we try to add n: a(n) = a(n-1)+n if not already in the sequence; if this fails we try to subtract 2n from a(n-1), or to add 2n to a(n-1), or to subtract 3n, or to add 3n, etc., until one of these produces a positive number not already in the sequence.

%C Is this a permutation of the natural numbers?

%C After 5.4*10^11 terms, the smallest number which has not appeared is 212. There are 177 numbers under 10000 which have not appeared. - _Benjamin Chaffin_, Sep 29 2016

%H Antti Karttunen, <a href="/A274647/b274647.txt">Table of n, a(n) for n = 0..85000</a>

%H <a href="/index/Rea#Recaman">Index entries for sequences related to Recamán's sequence</a>

%F A276342(a(n)) = n for all n.

%t f[s_List] := Block[{a = b = 0, k = 1, l = s[[-1]], n = Length@ s}, While[ If[l > k*n && !MemberQ[s, l - k*n], a = l - k*n]; If[ !MemberQ[s, l + k*n], b = l + k*n; Break[]]; a == b == 0, k++]; Append[s, If[a > 0, a, b]]]; Nest[f, {0}, 70]

%t (* _Robert G. Wilson v_, Sep 09 2016 *)

%o (Scheme, with defineperm1-macro from Antti Karttunen's IntSeq-library)

%o (defineperm1 (A274647 n) (if (<= n 1) n (let ((prev (A274647 (- n 1)))) (let loop ((k n)) (cond ((and (> (- prev k) 1) (not-lte? (A276342 (- prev k)) n)) (- prev k)) ((not-lte? (A276342 (+ prev k)) n) (+ prev k)) (else (loop (+ k n))))))))

%o (define (A276342 n) (A274647 (- n))) ;; This returns inverse values of A274647 from its hidden cache.

%o ;; We consider a > b (i.e. not less than b) also in case a is #f.

%o ;; (Because of the stateful caching system used by defineperm1-macro):

%o (define (not-lte? a b) (cond ((not (number? a)) #t) (else (> a b))))

%o ;; _Antti Karttunen_, Sep 04 2016

%o (Python)

%o l=[0]

%o for n in range(1, 101):

%o i=1

%o while True:

%o a=l[n - 1]

%o x=a - i*n

%o if x>0 and x not in l:

%o l.append(x)

%o break

%o y=a + i*n

%o if y>0 and not y in l:

%o l.append(y)

%o break

%o else : i+=1

%o print(l) # _Indranil Ghosh_, Jun 03 2017

%Y Cf. A005132, A064389.

%Y Left inverse: A276342 (also right inverse, if this sequence is a permutation of nonnegative integers).

%Y Cf. A276438 (gives k that was used when computing a(n), with sign).

%Y Cf. A274648 (another variant).

%K nonn,nice

%O 0,3

%A _Max Barrentine_, Aug 12 2016