login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nathanson's orphan-counting function h(n).
3

%I #44 Sep 28 2024 20:27:25

%S 1,4,7,13,15,26,25,39,40,54,49,79,63,88,88,112,93,140,109,159,142,170,

%T 143,224,168,216,202,255,199,304,219,308,268,316,274,404,281,370,338,

%U 438,323,484,345,481,433,484,389,611,422,566,492,607,459,684,508,692

%N Nathanson's orphan-counting function h(n).

%C Number of integer solutions to a*b - c*d = n such that a > c >= 0 and b > d >= 0. - _David Radcliffe_, Mar 28 2019

%H Giovanni Resta, <a href="/A274628/b274628.txt">Table of n, a(n) for n = 1..10000</a>

%H Brandon Dong, Soren Dupont, and W. Theo Waitkus, <a href="https://arxiv.org/abs/2409.15480">Raney Transducers and the Lowest Point of the p-Lagrange spectrum</a>, arXiv:2409.15480 [math.NT], 2024. See p. 25.

%H Sandie Han, Ariane M. Masuda, Satyanand Singh and Johann Thiel, <a href="https://doi.org/10.37236/5684">Orphans in Forests of Linear Fractional Transformations</a>, Electronic Journal of Combinatorics, Vol. 23, No. 3 (2016), Article P3.6. See Fig. 4.

%H Melvyn B. Nathanson, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.122.8.790">Pairs of matrices in GL_2(R_{>0}) that freely generate</a>, Amer. Math. Monthly, Vol. 122 No. 8 (2015), pp. 790-792. See Theorem 7.

%F a(n) = A002133(n) + 2*A000203(n) - A000005(n). - _David Radcliffe_, Mar 28 2019

%F G.f.: Sum_{i,j>=1} x^(i*j)/((1-x^i)*(1-x^j)). - _Seiichi Manyama_, Jan 08 2022

%t Table[Total[Function[parts, Count[CountDistinct /@ IntegerPartitions[n, All, parts], 2]] /@ Subsets[Range[n], {2}]] + 2 DivisorSigma[1, n] - DivisorSigma[0, n], {n, 1, 100}] (* _Eric Rowland_, May 26 2018 *)

%o (PARI) my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, N\i, x^(i*j)/((1-x^i)*(1-x^j))))) \\ _Seiichi Manyama_, Jan 08 2022

%o (Python)

%o from sympy import divisor_sigma

%o def A274628(n): return int(sum(divisor_sigma(j,0)*divisor_sigma(n-j,0) for j in range(1,(n-1>>1)+1)) + ((divisor_sigma(n+1>>1,0)**2 if n-1&1 else 0)-divisor_sigma(n,0)+3*divisor_sigma(n)>>1)) # _Chai Wah Wu_, Aug 30 2024

%Y Cf. A000005, A000203, A002133, A274629.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jul 07 2016

%E More terms from _Eric Rowland_, May 26 2018