login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274627
Product_{i=0..3} (2^floor((n+i)/4)-1).
2
0, 0, 0, 0, 1, 3, 9, 27, 81, 189, 441, 1029, 2401, 5145, 11025, 23625, 50625, 104625, 216225, 446865, 923521, 1876833, 3814209, 7751457, 15752961, 31755969, 64016001, 129048129, 260144641, 522337665, 1048788225, 2105834625, 4228250625, 8473082625, 16979393025, 34025371905, 68184176641
OFFSET
0,6
COMMENTS
This is a four-dimensional analog of the holes-in-sheet-of-paper sequence A274230. See A274230 and A274626 for further information.
REFERENCES
Tom Karzes, Posting to Math Fun Mailing List, Jul 05 2016.
FORMULA
Empirical g.f.: x^4*(1+2*x^2+6*x^3+4*x^4+8*x^6) / ((1-x)*(1-2*x)*(1-2*x^2)*(1+2*x^2)*(1-2*x^4)*(1-8*x^4)). - Colin Barker, Jul 06 2016
MAPLE
f:=(n, d) -> mul(2^floor((n+i)/d)-1, i = 0 .. d-1);
[seq(f(n, 4), n=0..40)];
PROG
(PARI) a(n) = prod(i=0, 3, 2^floor((n+i)/4)-1) \\ Colin Barker, Jul 06 2016
CROSSREFS
Sequence in context: A006521 A289257 A014953 * A080557 A022014 A181140
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 05 2016
STATUS
approved