login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A274627
Product_{i=0..3} (2^floor((n+i)/4)-1).
2
0, 0, 0, 0, 1, 3, 9, 27, 81, 189, 441, 1029, 2401, 5145, 11025, 23625, 50625, 104625, 216225, 446865, 923521, 1876833, 3814209, 7751457, 15752961, 31755969, 64016001, 129048129, 260144641, 522337665, 1048788225, 2105834625, 4228250625, 8473082625, 16979393025, 34025371905, 68184176641
OFFSET
0,6
COMMENTS
This is a four-dimensional analog of the holes-in-sheet-of-paper sequence A274230. See A274230 and A274626 for further information.
REFERENCES
Tom Karzes, Posting to Math Fun Mailing List, Jul 05 2016.
FORMULA
Empirical g.f.: x^4*(1+2*x^2+6*x^3+4*x^4+8*x^6) / ((1-x)*(1-2*x)*(1-2*x^2)*(1+2*x^2)*(1-2*x^4)*(1-8*x^4)). - Colin Barker, Jul 06 2016
MAPLE
f:=(n, d) -> mul(2^floor((n+i)/d)-1, i = 0 .. d-1);
[seq(f(n, 4), n=0..40)];
PROG
(PARI) a(n) = prod(i=0, 3, 2^floor((n+i)/4)-1) \\ Colin Barker, Jul 06 2016
CROSSREFS
Sequence in context: A006521 A289257 A014953 * A080557 A022014 A181140
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 05 2016
STATUS
approved