login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that sigma(k) == 0 (mod k-8).
2

%I #16 Feb 10 2021 01:28:02

%S 9,10,11,12,14,17,38,92,168,170,248,752,988,2528,2808,8648,12008,

%T 34688,63248,117808,526688,531968,820808,1292768,1495688,2095208,

%U 2112512,3477608,4495808,8419328,12026888,13192768,16102808,26347688,29322008,33653888,169371008,173631608,293947648,537116672,883927808,2147975168,2493705728,5556840416,13092865928,42783299288,69662739968,80999455688,217898810368,546409576448,1020401174528,1081071376208,1282330216448,1473186024448,1577975316488,1608005456768

%N Numbers k such that sigma(k) == 0 (mod k-8).

%e sigma(9) mod (9 - 8) = 13 mod 1 = 0.

%p with(numtheory); P:=proc(q,h) local n; for n from 1 to q do

%p if n+h>0 then if type(sigma(n)/(n+h),integer) then print(n); fi; fi; od; end: P(10^9,-8);

%t Select[Range[9, 10^6], Mod[DivisorSigma[1, #], # - 8] == 0 &] (* _Michael De Vlieger_, Jul 05 2016 *)

%Y Cf. A000203, A045770, A067702, A088833, A181598, A274551-A274561, A274563-A274566.

%K nonn

%O 1,1

%A _Paolo P. Lava_, Jul 05 2016

%E a(30)-a(56) from _Giovanni Resta_, Jul 05 2016