Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 12 2023 18:38:13
%S 1,1,3,17,155,2079,38629,951187,29979753,1175837345,56066617331,
%T 3187704802281,212628685506643,16413606252207007,1449425836362499605,
%U 144977415195565990619,16285937949513614300369,2039447464767566886933057,282862729890000953318773603
%N E.g.f.: exp(sum(bell(n)*z^n/n, n=1..infinity)).
%C The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.
%C Some transform pairs, see the formula section, are: x(n) = A000027(n) and a(n) = A000262(n); x(n) = A000045(n) and a(n) = A244430(n); x(n) = A000079(n) and a(n) = A000165(n); x(n) = A000108(n) and a(n) = A213507(n); x(n) = A000142(n) and a(n) = A158876(n); x(n) = A000203(n) and a(n) = A053529(n).
%F a(n) = n! * P(n), with P(n) = (1/n)*(sum(x(n-k) * P(k), k=0..n-1)), n >=1 and P(0) = 1, with x(n) = A000110(n), the Bell numbers.
%F E.g.f.: exp(sum(x(n)*z^n/n, n=1..infinity)) with x(n) = A000110(n).
%p a := proc(n): n!*P(n) end: P := proc(n): if n=0 then 1 else P(n):= expand((1/n)*(add(x(n-k) * P(k), k=0..n-1))) fi; end: with(combinat): x := proc(n): bell(n) end: seq(a(n), n=0..18);
%t nmax = 20; CoefficientList[Series[E^(Sum[BellB[n]*z^n/n, {n, 1, nmax}]), {z, 0, nmax}], z] * Range[0, nmax]! (* _Vaclav Kotesovec_, Jun 29 2016 *)
%Y Cf. A036039, A000110, A000165, A000262, A053529, A158876, A213507, A244430.
%K nonn
%O 0,3
%A _Johannes W. Meijer_, Jun 29 2016