Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 25 2018 08:06:29
%S 0,1,1,0,1,3,1,0,1,8,3,1,0,1,22,8,3,1,0,1,62,22,8,3,1,0,1,178,62,22,8,
%T 3,1,0,1,519,178,62,22,8,3,1,0,1,1533,519,178,62,22,8,3,1,0,1,4578,
%U 1533,519,178,62,22,8,3,1,0,1,13800,4578,1533,519,178,62,22,8,3,1,0,1
%N Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n starting with k columns of length 1 (n>=2, k>=0).
%C Number of entries in row n is n.
%C Sum of entries in row n = A082582(n).
%C T(n,0) = A188464(n-3) (n>=3).
%C Sum_{k>=0} k*T(n,k) = A105633(n-2).
%H M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.
%H Emeric Deutsch, S Elizalde, <a href="http://arxiv.org/abs/1609.00088">Statistics on bargraphs viewed as cornerless Motzkin paths</a>, arXiv preprint arXiv:1609.00088, 2016
%F G.f.: (1-3*z+z^2+2*t*z^3-z^3-(1-z)*sqrt((1-z)*(1-3*z-z^2-z^3)))/(2*z*(1-t*z)).
%e Row 4 is 3,1,0,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, they start with 3, 1, 0, 0, 0 columns of length 1.
%e Triangle starts
%e 0,1;
%e 1,0,1;
%e 3,1,0,1;
%e 8,3,1,0,1;
%e 22,8,3,1,0,1
%p G := (1-3*z+z^2+2*t*z^3-z^3-(1-z)*sqrt((1-z)*(1-3*z-z^2-z^3)))/(2*z*(1-t*z)): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form
%t nmax = 12;
%t g = (1 - 3z + z^2 + 2t z^3 - z^3 - (1-z) Sqrt[(1-z)(1 - 3z - z^2 - z^3)])/ (2z (1 - t z));
%t cc = CoefficientList[g + O[z]^(nmax+1), z];
%t T[n_, k_] := Coefficient[cc[[n+1]], t, k];
%t Table[T[n, k], {n, 2, nmax}, {k, 0, n-1}] // Flatten (* _Jean-François Alcover_, Jul 25 2018 *)
%Y Cf. A082582, A105633, A188464.
%K nonn,tabf
%O 2,6
%A _Emeric Deutsch_, Jun 25 2016