login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x)^2 = A( x^2/(1 - 2*x - 2*x^2) ).
3

%I #16 Aug 01 2016 17:59:00

%S 1,1,3,7,20,56,166,498,1530,4762,15022,47862,153859,498239,1623779,

%T 5321059,17520994,57937106,192304222,640446358,2139414409,7166431909,

%U 24065926653,81003492725,273229977460,923438683996,3126674842896,10604713671208,36025426127382,122566140787390,417584644921806,1424610537707166,4866239784751346,16642071212737394,56978489024931038,195289731964727862,670023314236521396,2301024202252503308,7909580344156028160

%N G.f. satisfies: A(x)^2 = A( x^2/(1 - 2*x - 2*x^2) ).

%C Radius of convergence of g.f. A(x) is r = (sqrt(17) - 3)/4 where r = r^2/(1-2*r-2*r^2) with A(r) = 1.

%C Compare g.f. with the identities:

%C (1) F(x)^2 = F( x^2/(1 - 2*x + 2*x^2) ) when F(x) = x/(1-x).

%C (2) M(x)^2 = M( x^2/(1 - 2*x) ) when M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x) is a g.f. of the Motzkin numbers (A001006).

%H Paul D. Hanna, <a href="/A274478/b274478.txt">Table of n, a(n) for n = 1..300</a>

%F G.f. A(x) satisfies: A( x/(1 + x + 2*x^2) )^2 = A( x^2/(1 + x^2 + 4*x^4) ).

%F Let G(x) denote the g.f. of A107087, where G(x)^2 = G(x^2) + 4*x, then g.f. A(x) satisfies:

%F (1) A(x) = x/(1-x) * G( A(x)^2 ),

%F (2) G(x^2) = x/Series_Reversion(A(x)) - x,

%F (3) A( x/(G(x^2) + x) ) = x,

%F (4) A(x)^2/(G(A(x)^4) + A(x)^2) = x^2/(1 - 2*x - 2*x^2).

%e G.f.: A(x) = x + x^2 + 3*x^3 + 7*x^4 + 20*x^5 + 56*x^6 + 166*x^7 + 498*x^8 + 1530*x^9 + 4762*x^10 + 15022*x^11 + 47862*x^12 +...

%e such that A( x^2/(1-2*x-2*x^2) ) = A(x)^2.

%e RELATED SERIES.

%e A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 20*x^5 + 63*x^6 + 194*x^7 + 613*x^8 + 1944*x^9 + 6236*x^10 + 20136*x^11 + 65496*x^12 + 214272*x^13 + 704774*x^14 + 2328852*x^15 +...

%e The series reversion of the g.f. A(x) begins:

%e Series_Reversion(A(x)) = x - x^2 - x^3 + 3*x^4 - 7*x^6 + 4*x^7 + 15*x^8 - 16*x^9 - 32*x^10 + 51*x^11 + 69*x^12 - 153*x^13 - 148*x^14 + 445*x^15 + 315*x^16 +...

%e which is related to A107087 by:

%e x/Series_Reversion(A(x)) = 1 + x + 2*x^2 - x^4 + 2*x^6 - 5*x^8 + 12*x^10 - 30*x^12 + 82*x^14 - 233*x^16 + 668*x^18 - 1949*x^20 +...+ A107087(n)*x^(2*n) +...

%e The g.f. G(x) of A107087 begins:

%e G(x) = 1 + 2*x - x^2 + 2*x^3 - 5*x^4 + 12*x^5 - 30*x^6 + 82*x^7 - 233*x^8 + 668*x^9 - 1949*x^10 + 5802*x^11 - 17503*x^12 +...

%e where G(x)^2 = G(x^2) + 4*x.

%e Also, we have A(x/(1 + x + 2*x^2))^2 = A(x^2/(1 + x^2 + 4*x^4)), where the series begin:

%e A(x/(1 + x + 2*x^2)) = x - x^5 - x^9 + 8*x^13 - 13*x^17 - 8*x^21 - x^25 + 307*x^29 + 135*x^33 - 9641*x^37 + 36869*x^41 +...

%e A(x^2/(1 + x^2 + 4*x^4)) = x^2 - 2*x^6 - x^10 + 18*x^14 - 41*x^18 - 6*x^22 + 104*x^26 + 424*x^30 - 301*x^34 - 19974*x^38 + 97752*x^42 +...

%e which is equal to A(x/(1 + x + 2*x^2))^2.

%o (PARI) {a(n) = my(A=x); for(i=1, #binary(n+1), A = sqrt( subst(A, x, x^2/(1-2*x-2*x^2 +x*O(x^n)) ) ) ); polcoeff(A, n)}

%o for(n=1, 40, print1(a(n), ", "))

%Y Cf. A107087, A274479, A274484, A260650.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jul 26 2016