Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Jun 21 2016 11:02:12
%S 1,1,1,2,1,2,1,2,2,1,2,2,3,2,1,2,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,3,2,1,
%T 2,3,2,3,2,3,4,3,2,2,1,2,3,2,3,3,2,3,4,3,2,3,2,1,2,3,2,3,3,3,2,3,4,3,
%U 4,2,3,2,1,2,2,3,3,2,3,3,4,3,2,3,4,3
%N Number of factors L(i) > 1 of A274281(n), where L = A000032 (Lucas numbers, 2,1,3,4,..., with 1 excluded)
%e The products of distinct Lucas numbers (including 2, excluding 1), arranged in increasing order, comprise A274281 (with 1 removed). The list begins with 2, 3, 4, 6 = 2*3, 7, 8 = 2*4, 11, 12, 14, 18, 21, 22, 24 = 2*3*4, so that a(4) = 2, a(6) = 2, a(13) = 3.
%t r[1] := 2; r[2] := 1; r[n_] := r[n] = r[n - 1] + r[n - 2];
%t s = {1}; z = 40; f = Join[{2}, Map[r, 2 + Range[z]]]; Take[f, 10]
%t Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
%t infQ[n_] := MemberQ[f, n];
%t ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
%t Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &,
%t Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}];
%t Take[ans, 10]
%t w = Map[Length, ans]
%t Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274349 *)
%t Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274350 *)
%t (* _Peter J. C. Moses_, Jun 17 2016 *)
%Y Cf. A000032, A274353, A274349, A274350, A160009, A272947.
%K nonn,easy
%O 1,4
%A _Clark Kimberling_, Jun 18 2016