login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that (16*10^k - 91)/3 is prime.
0

%I #27 May 02 2024 04:26:49

%S 1,2,3,5,16,18,22,31,40,98,99,192,233,367,501,1102,1381,1416,2018,

%T 6156,6860,7377,14004,16634,21422,27654,85473,260256,265052,274251

%N Numbers k such that (16*10^k - 91)/3 is prime.

%C For k > 1, numbers k such that the digit 5 followed by k-1 occurrences of the digit 3 followed by the digits 03 is prime (see Example section).

%C a(31) > 3*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 53w03</a>.

%e 3 is in this sequence because (16*10^3 - 91)/3 = 5303 is prime.

%e Initial terms and associated primes:

%e a(1) = 1, 23;

%e a(2) = 2, 503;

%e a(3) = 3, 5303;

%e a(4) = 5, 533303;

%e a(5) = 16, 53333333333333303, etc.

%t Select[Range[0, 100000], PrimeQ[(16*10^# - 91)/3] &]

%o (PARI) is(n)=ispseudoprime((16*10^n - 91)/3) \\ _Charles R Greathouse IV_, Jun 13 2017

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more

%O 1,2

%A _Robert Price_, Jun 22 2016

%E a(28)-a(30) from _Robert Price_, Jun 01 2023