login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274313
The number of conjugacy classes of n X n matrices over GF(2) which are squares of other such matrices.
3
1, 2, 4, 10, 22, 46, 96, 198, 406, 826, 1668, 3362, 6770, 13590, 27248, 54614, 109378, 218946, 438180, 876738, 1753998, 3508726, 7018368, 14038006, 28077846, 56157954, 112318900, 224642090, 449289666, 898586438, 1797182704, 3594378014, 7188772666, 14377567834, 28755164100, 57510365698, 115020782350, 230041628622, 460083340304, 920166792942
OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000 (terms 0..60 from N. J. A. Sloane)
Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.
FORMULA
G.f.: Product_{n>=1} (1-2*z^(2*n))/((1-2*z^n)*(1-2*z^(4*n))). - Jean-François Alcover, Dec 12 2018, after Victor S. Miller.
MAPLE
seq(coeff(series(mul((1-2*x^(2*k))/((1-2*x^k)*(1-2*x^(4*k))), k=1..n), x, n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Dec 13 2018
MATHEMATICA
terms = 40;
Product[(1-2z^(2n))/(1-2z^n)/(1-2z^(4n)), {n, 1, terms}] + O[z]^terms // CoefficientList[#, z]& (* Jean-François Alcover, Dec 12 2018 *)
PROG
(PARI) seq(n)=Vec(prod(i=1, n, (1-2*x^(2*i))/((1-2*x^i)*(1-2*x^(4*i)) + O(x*x^n)))) \\ Andrew Howroyd, Dec 12 2018
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-2*x^(2*k))/((1-2*x^k)*(1-2*x^(4*k))): k in [1..m/2]]))); // G. C. Greubel, Dec 16 2018
(Sage) m=40; s=(prod((1-2*x^(2*k))/((1-2*x^k)*(1-2*x^(4*k))) for k in (1..m/2))).series(x, m); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 16 2018
CROSSREFS
Cf. A266462.
Sequence in context: A360631 A337654 A369491 * A291397 A091618 A181158
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 25 2016
STATUS
approved