login
Number of factor-free Dyck words with slope 9/2 and length 11n.
6

%I #21 Dec 18 2023 00:30:55

%S 1,5,70,1696,49493,1593861,54591225,1950653202,71889214644,

%T 2712628146949,104277713515456,4069334248174800,160785480249706192,

%U 6419443865094494044,258585021917711797850,10496205397574996367474,428899108081734423242550,17628723180468295514015268,728347675604866545590505024

%N Number of factor-free Dyck words with slope 9/2 and length 11n.

%C a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (2n,9n) that stay below the line y=9/2x and also do not contain a proper subpath of smaller size.

%H Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, <a href="http://arxiv.org/abs/1606.02183">On rational Dyck paths and the enumeration of factor-free Dyck words</a>, arXiv:1606.02183 [math.CO], 2016.

%H P. Duchon, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00150-3">On the enumeration and generation of generalized Dyck words</a>, Discrete Mathematics, 225 (2000), 121-135.

%F Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(11*n,2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/11) = 1 + 5*x + 70*x^2 + 1696*x^3 + ... . Equivalently, [x^n]( A(x)^(11*n) ) = binomial(11*n, 2*n) for n = 0,1,2,... . - _Peter Bala_, Jan 01 2020

%e a(2) = 70 since there are 70 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,18) that stay below the line y=9/2x and also do not contain a proper subpath of small size; e.g., ENNENNENNNNNNENNNNNNNN is a factor-free Dyck word but ENEENENNNNNNNNNNNNNNNN contains the factor ENENNNNNNNN.

%Y Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274257 (slope 4/3), A274258 (slope 5/3), A274259 (slope 7/3).

%K nonn

%O 0,2

%A _Michael D. Weiner_, Jun 16 2016