login
A274232
Number of partitions of 2^n into at most three parts.
2
1, 2, 4, 10, 30, 102, 374, 1430, 5590, 22102, 87894, 350550, 1400150, 5596502, 22377814, 89494870, 357946710, 1431721302, 5726754134, 22906754390, 91626493270, 366504924502, 1466017600854, 5864066209110, 23456256447830, 93825009014102, 375300002501974
OFFSET
0,2
LINKS
FORMULA
Coefficient of x^(2^n) in 1/((1-x)*(1-x^2)*(1-x^3)).
Conjectures: (Start)
a(n) = (8+3*2^(1+n)+4^n)/12 for n>0.
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
G.f.: (1-5*x+4*x^2+2*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
PROG
(PARI)
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)).
b(n) = round(real((47+9*(-1)^n + 8*exp(-2/3*I*n*Pi) + 8*exp((2*I*n*Pi)/3) + 36*n+6*n^2)/72))
vector(50, n, n--; b(2^n))
CROSSREFS
A subsequence of A001399. Cf. A274100, A274233.
Sequence in context: A094957 A000733 A092073 * A360322 A112846 A050397
KEYWORD
nonn
AUTHOR
Colin Barker, Jun 15 2016
STATUS
approved