login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that both ror(p) and rol(p) are also primes, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left.
0

%I #15 Sep 16 2024 20:31:27

%S 3,7,11,31,43,67,79,127,131,139,167,191,211,223,227,307,331,367,487,

%T 523,631,691,743,751,883,971,1039,1087,1399,2063,2083,2143,2179,2239,

%U 2267,2287,2347,2411,2423,2503,2531,2543,2591,2687,2731,2803,2819,2927,2939,2963

%N Primes p such that both ror(p) and rol(p) are also primes, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left.

%C a(n) mod 4 = 3.

%t Select[Prime@ Range@ 430, And[PrimeQ@ FromDigits[RotateLeft@ #, 2], PrimeQ@ FromDigits[RotateRight@ #, 2]] &@ IntegerDigits[#, 2] &] (* _Michael De Vlieger_, Jun 22 2016 *)

%o (Python)

%o from sympy import isprime

%o for n in range(3, 10000, 2):

%o if not isprime(n): continue

%o BL = len(bin(n))-2

%o x = (n>>1) + ((n&1) << (BL-1)) # A038572(n)

%o if not isprime(x): continue

%o y = (n*2) - (1<<BL) + 1 # A006257(n) for n>0

%o if not isprime(y): continue

%o print(str(n), end=', ')

%Y Cf. A000040, A006257, A038572.

%K nonn,base

%O 1,1

%A _Alex Ratushnyak_, Jun 10 2016