Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Apr 25 2020 03:53:39
%S 1,1,1,2,4,8,17,37,81,180,405,917,2090,4795,11054,25589,59475,138712,
%T 324483,761163,1790028,4219139,9965328,23582735,55906518,132751359,
%U 315700152,751837207,1792853416,4280568845,10232005939,24484563844,58650123942,140625967460,337488663293,810641635789
%N Number of equivalence classes of Dyck paths of semilength n for the string uuu.
%H Gheorghe Coserea, <a href="/A274114/b274114.txt">Table of n, a(n) for n = 0..301</a>
%H K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, <a href="http://arxiv.org/abs/1510.01952">Equivalence classes of ballot paths modulo strings of length 2 and 3</a>, arXiv:1510.01952 [math.CO], 2015.
%F A(x) = (1 + x*y)/(1 - x*(y-1)^2), where 0 = x*y^3 - (1+2*x)*y^2 + (1+3*x)*y - x with y(0)=1. - _Gheorghe Coserea_, Jan 05 2017
%F a(n) ~ sqrt(51/4 + 577*sqrt(2)/64 + 19*sqrt(180250 + 127456*sqrt(2))/448) * (sqrt(13 + 16*sqrt(2))/2 - 1/2)^n / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Apr 25 2020
%t F[x_, y_] = x y^3 - (1 + 2x) y^2 + (1 + 3x) y - x;
%t Y[n_] := Module[{y0 = 1, y1 = 0}, For[k = 1, k <= n, k++, y1 = y0 - F[x, y0] / (D[F[x, y], y] /. y -> y0) + O[x]^n // Normal; If[y1 == y0, Break[]]; y0 = y1]; y0];
%t seq[n_] := Module[{y = Y[n]}, ((1 + x y)/(1 - x (y-1)^2)) + O[x]^n // CoefficientList[#, x]&];
%t seq[36] (* _Jean-François Alcover_, Jul 27 2018, after _Gheorghe Coserea_ *)
%o (PARI)
%o x='x; y='y;
%o Fxy = x*y^3 - (1+2*x)*y^2 + (1+3*x)*y - x;
%o Y(N) = {
%o my(y0 = 1 + O('x^N), y1=0);
%o for (k = 1, N,
%o y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
%o if (y1 == y0, break()); y0 = y1);
%o y0;
%o };
%o seq(N) = my(y = Y(N)); Vec((1 + x*y)/(1 - x*(y-1)^2));
%o seq(35) \\ _Gheorghe Coserea_, Jan 05 2017
%Y Cf. A274110-A274115.
%K nonn,walk
%O 0,4
%A _N. J. A. Sloane_, Jun 17 2016
%E a(0)=1 prepended and more terms added by _Gheorghe Coserea_, Jan 05 2017