Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Sep 08 2022 08:46:17
%S 4,5,12,31,68,129,220,347,516,733,1004,1335,1732,2201,2748,3379,4100,
%T 4917,5836,6863,8004,9265,10652,12171,13828,15629,17580,19687,21956,
%U 24393,27004,29795,32772,35941,39308,42879,46660,50657,54876,59323,64004,68925
%N a(n) = n^3 + 4.
%H Vincenzo Librandi, <a href="/A274077/b274077.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F O.g.f.: (4 - 11*x + 16*x^2 - 3*x^3)/(1 - x)^4.
%F E.g.f.: (x^3 + 3*x^2 + x + 4)*exp(x). - _Robert Israel_, Jun 09 2016
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
%p seq(n^3+4, n=0..100); # _Robert Israel_, Jun 09 2016
%t Table[n^3 + 4, {n, 0, 60}]
%t Range[0,50]^3+4 (* or *) LinearRecurrence[{4,-6,4,-1},{4,5,12,31},50] (* _Harvey P. Dale_, Jul 01 2017 *)
%o (Magma) [n^3+4: n in [0..50]];
%o (PARI) a(n) = n^3 + 4 \\ _Felix Fröhlich_, Jun 09 2016
%Y Sequences of the type n^3+k: A000578 (k=0), A001093 (k=1), A084380 (k=2), A084378 (k=3), this sequence (k=4), A084381 (k=5), A084382 (k=6), A084377 (k=7).
%K nonn,easy
%O 0,1
%A _Vincenzo Librandi_, Jun 09 2016