login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (x^4 + x^10) / (1 - 2*x + x^2).
1

%I #18 Apr 13 2022 13:25:18

%S 0,0,0,0,1,2,3,4,5,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,

%T 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,

%U 86,88,90,92,94,96,98,100,102,104,106,108,110,112

%N Expansion of (x^4 + x^10) / (1 - 2*x + x^2).

%C This g.f. was incorrectly conjectured by Plouffe in his 1992 disseration to be the g.f. for A005377.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F G.f.: z^4*(z^2+1)*(z^4-z^2+1)/(z-1)^2. [Simon Plouffe in his 1992 dissertation.]

%F a(n) = 2*(n-6), n>=9. - _R. J. Mathar_, Jun 09 2016

%F a(n) = A004279(n-4) for n >= 4. - _Georg Fischer_, Oct 30 2018

%t CoefficientList[Series[(x^4+x^10)/(1-2x+x^2),{x,0,120}],x] (* _Harvey P. Dale_, Sep 10 2018 *)

%Y Cf. A004279, A005377.

%K nonn,easy

%O 0,6

%A _Sean A. Irvine_, Jun 07 2016