login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form n^2+1 that divide 4^n-1.
3

%I #24 Oct 06 2021 12:04:19

%S 1,5,17,257,46657,65537,148997,67371265,405458497,1370776577,

%T 3497539601,4294967297,80542440001,422240040001,1911029760001,

%U 139251776898727937,286245437364810001,6017402415698251777,18446744073709551617

%N Numbers of the form n^2+1 that divide 4^n-1.

%C Corresponding values of n are given by A273870(k)-1 for k>=1.

%C Contains Fermat numbers (A000215) greater than 3.

%C Also, numbers of the form n^2+1 that divide (4^k)^n-1 for all k >= 0.

%C a(20) > 4*10^24, if it exists. - _Giovanni Resta_, Feb 26 2020

%F a(n) = (A273870(n)-1)^2+1.

%e 17 = 4^2+1 is a term because divides 4^4-1; 255 / 17 = 15.

%o (PARI) is(n) = ceil(sqrt(n-1))==sqrtint(n-1) && Mod(4, n)^(sqrtint(n))==1

%o for(n=0, 1e12, if(is(n^2+1), print1(n^2+1, ", "))) \\ _Felix Fröhlich_, Jun 06 2016

%Y Subsequence of A002522 (numbers of the form n^2+1).

%Y Prime terms are in A274000.

%Y Cf. A000215, A002522, A273870, A273871, A274000.

%K nonn,more

%O 1,2

%A _Jaroslav Krizek_, Jun 06 2016

%E a(16)-a(19) from _Lars Blomberg_, Aug 10 2016

%E Edited by _Max Alekseyev_, Apr 30 2018