Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 06 2016 11:22:56
%S 1,0,4,3,2,9,7,3,6,7,3,8,6,8,7,1,3,4,4,9,1,8,9,3,1,6,0,7,8,9,4,7,7,1,
%T 2,2,1,7,5,6,6,1,6,3,3,1,2,2,6,9,1,5,5,7,8,8,6,8,8,3,2,5,5,8,9,8,6,6,
%U 2,7,1,0,9,6,4,3,9,2,2,0,2,2,6,7,7,4,2,1,1,5,0,6,3,5,6,8,4,2,6,1,0,8,9
%N Decimal expansion of the odd Bessel moment t(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
%H David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008, page 21.
%F Integral_{0..inf} x^5*BesselI_0(x)^2*BesselK_0(x)^3.
%F Conjecture: Equals 76/15 t(5,3) - 16/45 t(5,1).
%e 1.0432973673868713449189316078947712217566163312269155788688325589866...
%t t[5, 5] = NIntegrate[x^5*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 103];
%t RealDigits[t[5, 5]][[1]]
%Y Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273989 (t(5,1)), A273990 (t(5,3)).
%K nonn,cons
%O 1,3
%A _Jean-François Alcover_, Jun 06 2016