login
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 20", based on the 5-celled von Neumann neighborhood.
4

%I #15 Nov 16 2016 10:33:02

%S 1,2,4,8,16,34,68,128,256,544,1088,2056,4112,8738,17476,32768,65536,

%T 139264,278528,526336,1052672,2236928,4473856,8388736,16777472,

%U 35652128,71304256,134744072,269488144,572662306,1145324612,2147483648,4294967296,9126805504

%N Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 20", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A273972/b273972.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A273972/a273972.tmp.txt">Diagrams of the first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F a(2*n+2) = 2*a(2*n+1). - _Paul Curtz_, Nov 16 2016

%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];

%t code=20; stages=128;

%t rule=IntegerDigits[code,2,10];

%t g=2*stages+1; (* Maximum size of grid *)

%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)

%t ca=a;

%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];

%t PrependTo[ca,a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k=(Length[ca[[1]]]+1)/2;

%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];

%t Table[FromDigits[Part[ca[[i]][[i]],Range[1,i]],2], {i,1,stages-1}]

%Y Cf. A273495, A273531, A273973.

%K nonn,easy

%O 0,2

%A _Robert Price_, Nov 09 2016