login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273911
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 614", based on the 5-celled von Neumann neighborhood.
1
1, 3, 5, 11, 17, 55, 69, 219, 257, 775, 1301, 2923, 4113, 12407, 20805, 46811, 65537, 196615, 327701, 721003, 1114385, 3606391, 4527173, 14380507, 16777473, 50333447, 83891477, 184576875, 285282321, 923234423, 1158959429, 3681400539, 4294967297, 12884901895
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=614; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]][[i]], Range[i, 2*i-1]], 2], {i, 1, stages-1}]
CROSSREFS
Cf. A273910.
Sequence in context: A167466 A284144 A283913 * A284242 A284306 A283399
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jun 03 2016
STATUS
approved