login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k even-length columns (n>=2,k>=0).
3

%I #16 Aug 19 2017 23:20:20

%S 1,1,1,2,2,1,4,6,2,1,8,14,10,2,1,16,35,28,15,2,1,33,84,88,46,21,2,1,

%T 69,203,247,176,68,28,2,1,146,486,693,558,311,94,36,2,1,312,1163,1882,

%U 1786,1083,507,124,45,2,1,673,2776,5052,5410,3898,1900,780,158,55,2,1

%N Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k even-length columns (n>=2,k>=0).

%C Number of entries in row n is n - 1.

%C Sum of entries in row n = A082582(n).

%C T(n,0) = A004149(n).

%C Sum(k*T(n,k),k>=0) = A273904(n).

%H M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.

%H Emeric Deutsch, S Elizalde, <a href="http://arxiv.org/abs/1609.00088">Statistics on bargraphs viewed as cornerless Motzkin paths</a>, arXiv preprint arXiv:1609.00088, 2016

%F G.f.: G = G(t,z) satisfies aG^2 + bG + c = 0, where a = z(tz^2-tz+z+t), b = tz^4+(1+t)z^3+(1-t)z^2+(1+t)z-1, c =tz^4+z^2.

%F The trivariate g.f. G(t,s,z), where t (s) marks number of odd-length (even-length) columns and z marks semiperimeter, satisfies AG^2 + BG + C = 0, where A = z(tsz^2-tsz+tz+s), B = tsz^4+(t+s)z^3+(1-ts)z^2+(t+s)z-1, C = tsz^4+s(1-t)z^3+tz^2.

%e Row 4 is 2,2,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and, clearly, they have 0,1,1,2,0 columns of even length.

%e Triangle starts

%e 1;

%e 1,1;

%e 2,2,1;

%e 4,6,2,1;

%e 8,14,10,2,1

%p eq := z*(t*z^2-t*z+z+t)*f^2-(1-(t+1)*z-(1-t)*z^2-(t+1)*z^3-t*z^4)*f+z^2+t*z^4 = 0: f := RootOf(eq,f): fser := simplify(series(f, z = 0, 15)): for n from 2 to 12 do P[n]:=sort(coeff(fser,z,n)) end do: for n from 2 to 12 do seq(coeff(P[n],t,k),k=0..n-2) end do; # yields sequence in triangular form

%p # second Maple program:

%p b:= proc(n, y, t) option remember; expand(`if`(n=0, 1-t,

%p `if`(t<0, 0, b(n-1, y+1, 1))+ `if`(t>0 or y<2, 0,

%p b(n, y-1, -1))+ `if`(y<1, 0, b(n-1, y, 0)*z^

%p `if`(y::even, 1, 0))))

%p end:

%p T:= n-> (p-> seq(coeff(p, z, i), i=0..n-2))(b(n, 0$2)):

%p seq(T(n), n=2..15); # _Alois P. Heinz_, Jun 24 2016

%t b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*z^If[EvenQ[y], 1, 0]]]];

%t T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, n-2}]][b[n, 0, 0] ];

%t Table[T[n], {n, 2, 15}] // Flatten (* _Jean-François Alcover_, Jul 21 2016, after _Alois P. Heinz_ *)

%Y Cf. A004149, A082582, A273901, A273902, A273904.

%K nonn,tabl

%O 2,4

%A _Emeric Deutsch_, Jun 23 2016