login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).
16

%I #62 Oct 06 2019 02:37:54

%S 1,1,1,1,1,1,1,1,2,2,1,1,2,2,2,1,1,3,5,5,3,1,1,3,6,7,6,3,1,1,4,9,13,

%T 13,9,4,1,1,4,10,17,20,17,10,4,1,1,5,15,30,42,42,30,15,5,1,1,5,16,36,

%U 57,66,57,36,16,5,1

%N Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).

%C The a(k,m) form a table where each row has k-1 elements starting from 2 and the a(1,1) = 1.

%H Giedrius Alkauskas, <a href="http://arxiv.org/abs/0801.0805">One curious proof of Fermat's little theorem</a>, arXiv:0801.0805 [math.NT], 2008.

%H Giedrius Alkauskas, <a href="https://www.jstor.org/stable/40391097">A curious proof of Fermat's little theorem</a>, Amer. Math. Monthly 116(4) (2009), 362-364.

%H H. Gingold, H. W. Gould, and Michael E. Mays, <a href="https://www.researchgate.net/publication/268023169_Power_product_expansions">Power Product Expansions</a>, Utilitas Mathematica 34 (1988), 143-161.

%H H. Gingold and A. Knopfmacher, <a href="http://dx.doi.org/10.4153/CJM-1995-062-9">Analytic properties of power product expansions</a>, Canad. J. Math. 47 (1995), 1219-1239.

%H W. Lang, <a href="/A157162/a157162.txt">Recurrences for the general problem</a>.

%F a(k,m) = a(k, k-m).

%F For prime p: Sum_{m = 1..p-1} a(p, m) = (2^p - 2)/p.

%F a{k}(h) satisfies Sum_{d|k} (1/d)*(a{k/d}(h))^d = ((h+1)^k - 1)/k. [Corrected by _Petros Hadjicostas_, Oct 04 2019]

%F For prime p: a{p}(h) = ((h+1)^p - h^p - 1)/p.

%F See A273873 for the definition of strict tree. Then a(n,m) = Sum_t (-1)^{v(t)-1} where the sum is over all strict trees of weight n with m leaves, and v(t) is the number of nodes in t (including the leaves, which are positive integers). See example 2 and the first Mathematica program. - _Gus Wiseman_, Nov 14 2016

%e a{1}(h) = h,

%e a{2}(h) = h,

%e a{3}(h) = h^2 + h,

%e a{4}(h) = h^3 + h^2 + h,

%e a{5}(h) = h^4 + 2*h^3 + 2*h^2 + h,

%e a{6}(h) = h^5 + 2*h^4 + 2*h^3 + 2*h^2 + h,

%e a{7}(h) = h^6 + 3*h^5 + 5*h^4 + 5*h^3 + 3*h^2 + h,

%e a{8}(h) = h^7 + 3*h^6 + 6*h^5 + 7*h^4 + 6*h^3 + 3*h^2 + h,

%e a{9}(h) = h^8 + 4*h^7 + 9*h^6 + 13*h^5 + 13*h^4 + 9*h^3 + 4*h^2 + h

%e ...

%e and the corresponding a(k,m) table is:

%e 1,

%e 1,

%e 1, 1,

%e 1, 1, 1,

%e 1, 2, 2, 1,

%e 1, 2, 2, 2, 1,

%e 1, 3, 5, 5, 3, 1,

%e 1, 3, 6, 7, 6, 3, 1,

%e 1, 4, 9, 13, 13, 9, 4, 1,

%e ...

%e a(7,3) = 5 because there are six strict trees contributing positive one {{5,1},1}, {{4,2},1}, {{4,1},2}, {{3,2},2}, {4,{2,1}}, {{3,1},3} and there is one strict tree contributing negative one {4,2,1}. - _Gus Wiseman_, Nov 14 2016

%p with(ListTools), with(numtheory), with(combinat);

%p L := product(1-a[k]*x^k, k = 1 .. 600);

%p S := Flatten([seq(-h, i = 1 .. 100)]);

%p Sabs := Flatten([seq(i, i = 1 .. 100)]);

%p seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 20);

%p map(coeffs, [seq(simplify(a[i]), i = 1 .. 20)]);

%t strictrees[n_Integer?Positive]:=Prepend[Join@@Function[ptn,Tuples[strictrees/@ptn]]/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&],n];

%t Table[Sum[(-1)^(Count[tree,_,{0,Infinity}]-1),{tree,Select[strictrees[n],Length[Flatten[{#}]]===m&]}],{n,1,9},{m,1,n-1/.(0->1)}] (* _Gus Wiseman_, Nov 14 2016 *)

%t (* second program *)

%t A[m_, n_] :=

%t A[m, n] =

%t Which[m == 1, -h, m > n >= 1, 0, True,

%t A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];

%t a[n_] := Expand[-A[n, n]];

%t a /@ Range[1, 25] (* _Petros Hadjicostas_, Oct 04 2019, courtesy of _Jean-François Alcover_ *)

%Y Cf. A196545, A220418, A220420, A273866, A273873, A279785, A290261, A290262, A290971, A295632.

%K nonn,tabf

%O 1,9

%A _Gevorg Hmayakyan_, Jun 01 2016