login
A273790
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 931", based on the 5-celled von Neumann neighborhood.
1
1, 6, 31, 80, 161, 282, 451, 676, 965, 1326, 1767, 2296, 2921, 3650, 4491, 5452, 6541, 7766, 9135, 10656, 12337, 14186, 16211, 18420, 20821, 23422, 26231, 29256, 32505, 35986, 39707, 43676, 47901, 52390, 57151, 62192, 67521, 73146, 79075, 85316, 91877, 98766
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 31 2016: (Start)
a(n) = (4*n^3+12*n^2+11*n-9)/3 for n>0.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4.
G.f.: (1+2*x+13*x^2-12*x^3+4*x^4) / (1-x)^4.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=931; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273789.
Sequence in context: A215730 A187508 A087725 * A096959 A112562 A244716
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 30 2016
STATUS
approved