The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273752 Integer area of primitive bicentric quadrilateral with integer side, rational inradius and rational circumradius. Excluding right kites. 0
 7140, 16380, 87780, 1543668, 1697892, 4444440, 5858580 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Bicentric quadrilaterals have the following properties: 1. a+c = b+d = s where s is the semiperimeter; 2. A+C = B+D = 180 degrees; 2. Area S = sqrt(a b c d); 3. Circumradius R = sqrt(a*b + c*d)*sqrt(a*c + b*d)*sqrt(a*d + b*c)/S; 4. Inradius r = S/s (it follows that r is always rational if sides and area are integers); 5. Length of the diagonal separating a-b and c-d is (4S*R)/(a*b + c*d), the other diagonal can be obtained by swapping b,c or swapping b,d. It follows that all diagonals are rational iff a,b,c,d,R,S are rationals. There are only 7 primitive cases which are not right kites for S < 10^7. From empirical observation, the area seems to be a multiple of 84. (If proven, the program could be modified to run 84 times as fast.) Special cases of bicentric quadrilaterals are right kites and isosceles trapezium. Integer right kites can be generated by joining two (a,b,c) Pythagorean triangles, which gives S=a b/2, R=c/2, r=ab/(a+b+c). Integer isosceles trapezium is impossible. Proof: 1. Let the sides of integer isosceles trapezium be (s-t,s,s+t,s); 2. S = s*sqrt(s^2 - t^2) and R = 2*s^2*sqrt(2s^2 - t^2)/S; 3. s^2 - t^2 and 2s^2 - t^2 are perfect squares; 4. Let u^2 = 2s^2 - t^2, v^2 = s^2 - t^2; 5. t^2,s^2,u^2 is an arithmetic progression with common difference = v^2; 6. Fermat's right triangle theorem states that no integer solution exists, except v=0 which corresponds to (0,s,2s,s), a degenerate quadrilateral. QED. LINKS Wikipedia, Bicentric quadrilateral. Wikipedia, Fermat's right triangle theorem. EXAMPLE All examples with S < 10^7: a,    b,    c,    d,    S,       R,      r 204,  140,  85,   21,   7140,    442,    476/15 315,  260,  91,   36,   16380,   650,    140/3 440,  399,  231,  190,  87780,   1885/2, 418/3 2397, 1564, 1316, 483,  1543668, 4810,   128639/240 4756, 3451, 1428, 123,  1697892, 15130,  348 2849, 2184, 2145, 1480, 4444440, 6290,   3080/3 5460, 5365, 1131, 1036, 5858580, 11050,  7215/8 MATHEMATICA SMin=7140; SMax=16380(*WARNING: runs very slow*); dS=1(*assuming S mod 84 = 0, set to 84 to run faster*); Do[   s=(a+b)/2+Sqrt[(a-b)^2/4+S^2/(a b)];   If[s//IntegerQ//Not, Continue[]];   If[GCD[a, b, s]>1, Continue[]];   R=(Sqrt[#1#2+#3#4]Sqrt[#1#3+#2#4]Sqrt[#1#4+#2#3])/S&[a, b, s-b, s-a];   If[R\[NotElement]Rationals, Continue[]];   S(*{a, b, s-b, s-a, S, R, S/s}*)//Sow;   , {S, Round[SMin, dS], SMax, dS}   , {a, S^2//Divisors//Select[#, S<#^2&&#

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 19:19 EDT 2022. Contains 354071 sequences. (Running on oeis4.)