login
Number of forests of labeled rooted trees of height at most 1, with n labels, ten of which are used for root nodes and any root may contain >= 1 labels.
2

%I #4 May 27 2016 12:40:59

%S 115975,6188545,188526162,4324211606,83234980829,1422697691415,

%T 22336690031656,329296289467288,4628083121855622,62687799439000450,

%U 824939949711312292,10611095747493196956,134039591449028959694,1668916223557034160170,20541239452587941670792

%N Number of forests of labeled rooted trees of height at most 1, with n labels, ten of which are used for root nodes and any root may contain >= 1 labels.

%H Alois P. Heinz, <a href="/A273660/b273660.txt">Table of n, a(n) for n = 10..986</a>

%F E.g.f.: x^10/10! * Sum_{j=0..10} Stirling2(10,j)*exp(x)^j.

%F a(n) = C(n,10) * Sum_{j=0..10} Stirling2(10,j) * j^(n-10).

%p a:= n-> binomial(n,10)*add(Stirling2(10,j)*j^(n-10), j=0..10):

%p seq(a(n), n=10..40);

%Y Column k=10 of A143396.

%K nonn

%O 10,1

%A _Alois P. Heinz_, May 27 2016