Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 09 2025 02:05:23
%S 0,0,0,0,0,0,0,0,0,0,1,0,8,0,0,0,10,0,7,0,0,20,1,0,0,16,0,0,24,0,21,0,
%T 21,32,0,0,31,22,27,0,30,0,31,24,0,22,27,0,0,0,21,28,29,0,45,0,54,4,
%U 14,0,49,54,0,0,30,24,64,36,45,0,19,0,67,70,0,32,42,54,37,0,0,18
%N a(n) = A000594(n) mod n.
%H Seiichi Manyama, <a href="/A273650/b273650.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000594(n) mod n.
%F From _Amiram Eldar_, Jan 08 2025: (Start)
%F a(A063938(n)) = 0.
%F abs(a(A295654(n))) = 1. (End)
%e tau(10) mod 10 = (-115920) mod 10 = 0,
%e tau(11) mod 11 = 534612 mod 11 = 1.
%t a[n_] := Mod[RamanujanTau[n], n]; Array[a, 100] (* _Amiram Eldar_, Jan 08 2025 *)
%o (PARI) a(n)=ramanujantau(n)%n \\ assumes the GRH; _Charles R Greathouse IV_, May 27 2016
%o (Python)
%o from sympy import divisor_sigma
%o def A273650(n): return -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n # _Chai Wah Wu_, Nov 08 2022
%Y Cf. A000594, A063938, A295654.
%K nonn,changed
%O 1,13
%A _Seiichi Manyama_, May 27 2016